Ultra-low-power Angle-of-Arrival Estimation Using a Single Antenna

Nakul Garg, Nirupam Roy
University of Maryland College Park

Overview

Traditional antenna array approach:

- Power hungry

Low-power Reconfigurable Antenna

- Reconfigurable antenna
- Passive envelope detector
- Small AI model

Collision Detection

- Unequal duty cycles

Beacon Identification Algorithm

\[
y(t) = A_1 e^{j 2 \pi f_1 t} + A_2 e^{j 2 \pi f_2 t}
\]

\[
y_{envelope}(t) = |y(t)|
\]

Implementation

- Antenna array
- I/Q Demodulation
- Digital signal processor

Evaluation

- Error (deg)
- Location ID
Ultra-low-power Angle-of-Arrival Estimation Using a Single Antenna

Nakul Garg, Nirupam Roy
University of Maryland College Park

Overview

Traditional antenna array approach:

- Switching gain patterns
- Passive envelope detector
- Small AI model

Sirius:

- Reconfigurable antenna
- Passive envelope detector
- Digital signal processor

Low-power Reconfigurable Antenna

- PIN Diodes
- MUX

Collision Detection

Beacon Identification Algorithm

- Anchor Beacon (A1, F1)
- Anchor Beacon (A2, F2)

Implementation

Evaluation

- Ground truth angles (deg)
- Estimated angles (deg)
- Error (deg)

Testing environment:

- University of Maryland College Park

Diagrams and graphs showing antenna array, reconfigurable antenna, and various signal processing elements.
Ultra-low-power Angle-of-Arrival estimation Using a Single Antenna

Nakul Garg, Nirupam Roy
University of Maryland College Park

Overview

Traditional antenna array approach:

- Power hungry
- Switching gain patterns
- I/Q Demodulation
- Digital signal processor

Sirius:

- Reconfigurable antenna
- Passive envelope detector
- Small AI model

Reconfigurable Antenna

- PIN Diodes
- LNA
- MUX

Collision Detection

Unequal duty cycles

Anchor Identification

Case 1

- Anchor 1
- Anchor 2
- Received signal

Case 2

- Anchor 1
- Anchor 2
- Received signal

Evaluation

- Location ID
- Median Error (deg)
- Direct-path LOS
- Multi-path LOS
- Direct-path NLOS
- Multi-path NLOS

Prototype

- US Quarter
- Lipo battery
- MSP430FR5969

Applications

- Precision Farming
- Wildlife Monitoring
- Asset Tracking
- Climate Sensing
- Space Localization