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UNSUPERVISED INDOOR LOCALIZATION 
AND HEADING DIRECTIONS ESTIMATION 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

[0001] The present application claims the benefit of U.S. 
Provisional Application Ser. No. 61/723,919, filed Nov. 8, 
2012, and U.S. Provisional Application Ser. No. 61/842,083, 
filed Jul. 2, 2013, both of which are hereby incorporated by 
reference herein in their entireties, including any figures, 
tables, and drawings. 

GOVERNMENT SUPPORT 

[0002] This invention was made with government support 
under Grant No. NSF Grant No. CNS ()747206 and NSF 
Grant No. U.S. Pat. No. 0,910,846. The government has cer 
tain rights in the invention. 

BACKGROUND 

[0003] Localization refers to the process by which an 
object’s location is determined. Outdoor localization, for 
example, through global positioning systems (GPS) is preva 
lent. However, indoor localization is not common, partly due 
to the spatial granularity requirements that place a burden on 
a system to achieve fairly high location accuracy. For 
instance, while a five-meter location error outdoors may still 
indicate the same street, a five-meter location error in an 
indoor environment may mean an entirely different room in a 
building or two different aisles in a grocery store, which 
would render an inventory-management application that 
needs aisle-level precision inoperable. 
[0004] While high precision may be attainable with perva 
sive WiFi systems, this comes at what may be prohibitively 
high cost, mostly in the form of meticulous signal calibration. 
Also, such calibration is not necessarily a one-time cost since 
radio frequency (RF) fingerprints could change, for example, 
due to changes in layout and objects in the indoor environ 
ment. Attempting to simplify the calibration process in the 
related art has led to significantly reduced location accuracy. 
This tradeoff between accuracy and calibration overhead has 
been an important challenge to the development of an accu 
rate indoor localization system with low calibration over 
head. 

BRIEF SUMMARY 

[0005] Techniques and systems for indoor localization are 
described. 
[0006] A system for unsupervised indoor localization can 
include at least one sensor, a list of landmarks of an indoor 
environment stored on the one or more computer-readable 
storage media; and an unsupervised indoor location applica 
tion embodied in program instructions stored on the one or 
more computer-readable storage media that, when executed 
by a processing system, direct the processing system to: 
determine an estimated current location of a user; collect 
sensor data from the at least one sensor for a period of time; 
estimate a location of the user using the sensordata, the period 
of time, and the list of landmarks; determine an existence of 
a new organic landmark and add any new organic landmarks 
to the list of landmarks; and update location of the user. 
[0007] In an embodiment, a system includes a computer 
readable medium having computer-executable instructions 
for performing a method comprising estimating the indoor 
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location of a user of the system. Estimating the indoor loca 
tion of the user can include performing dead-reckoning using 
sensor data calibrated (and re-calibrated) from seed and 
organic landmarks and determining the location of at least 
one organic landmark using sensor data. The sensor data used 
for determining the location the at least one landmark can be 
the same as, have some overlap with, or be different from the 
sensor data used for dead-reckoning. 
[0008] In an embodiment, a system can include an applica 
tion or “app” running on a mobile device of a user of the 
system. The app can run completely locally on the mobile 
device or can communicate with one or more other devices 
(e.g., a server and/or computing devices such as computers 
and/or mobile devices) over a network (e.g., a WiFi network 
or cellular network). Sensor data obtained by the mobile 
device of the user can be stored locally on the mobile device, 
on a server, on other computing devices in communication 
with the user’s mobile device, or some combination thereof. 
In a particular embodiment, sensor data is collected over a 
network from multiple uses of the system (e.g., from multiple 
users each using a mobile device which may be different from 
that of other users) and stored on a server. Then, a user of the 
system can access the data previously collected, which can 
help improve the accuracy of the indoor localization of that 
llSer. 

[0009] Techniques for unsupervised indoor localization 
can include: in response to receiving first sensor data, esti 
mating a projected location of a userin an indoor environment 
by using the first sensor data, last known location, and time 
since the user was at the last known location; determining a 
presence of another known location, wherein the another 
known location is an estimated indoor location based on a 
distinct signature detected by one or more sensors providing 
the first sensor data; and, in response to determining the 
presence of the another known location, adjusting the pro 
jected location and estimating a second projected location of 
the user by using a second sensor data provided by the one or 
more sensors, the another known location, and time since the 
user was at the another known location. 

[0010] According to another implementation, a method of 
unsupervised indoor localization can include estimating a 
location of a user within an indoor environment by estimating 
a movement trace of the user within the indoor environment 
using first sensor data obtained from at least one sensor; and 
identifying at least one landmark within the indoor environ 
ment using second sensor data obtained from the at least one 
SellSOr. 

[0011] A method for identifying landmarks within an 
indoor environment can include obtaining sensor data from at 
least one device carried by a user within the indoor environ 
ment; analyzing the sensor data to identify sensor signatures 
of the sensor data within the indoor environment; comparing 
the sensor data against known sensor signatures for building 
entrances, staircases, elevators, and escalators to determine 
the existence and quantity of such structures within the indoor 
environment; and determining an existence of any organic 
landmarks by the presence of a unique sensor signature 
within the indoor environment that is repeated within a pre 
determined threshold and/or across a predetermined number 
of users. The sensor data may be obtained from at least one 
sensor of the device, for example, an accelerometer, compass, 
gyroscope, magnetometer, barometer, microphone, lightsen 
sor, temperature sensor, chemical sensor, humidity sensor, 
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Bluetooth signal strength sensor, WiFi signal strength sensor, 
or cellular signal strength sensor. 
[0012] Techniques for estimating a heading direction of a 
user are also described. In some implementations, the head 
ing direction estimation can be used when performing indoor 
localization. According to an example technique heading 
direction of a user may be estimated by: obtaining sensor data 
from a device carried by the user, wherein the sensor data 
comprises accelerometer data and gyroscope data; detecting a 
motion mode of the user by analyzing the accelerometer data; 
detecting a number of steps of the user by analyzing the 
accelerometer data in view of the motion mode; determining 
an initial heading direction of the user in three-dimensional 
space using the gyroscope data and the number of steps; 
determining a heading direction vector of the user by estimat 
ing the heading angle of the user relative to a reference direc 
tion; and projecting the heading direction vector onto a plane 
on which the user is moving to estimate the heading direction 
of the user. 
[0013] This Summary is provided to introduce a selection 
of concepts in a simplified form that are further described 
below in the Detailed Description. This Summary is not 
intended to identify key features or essential features of the 
claimed subject matter, nor is it intended to be used to limit 
the scope of the claimed subject matter. 

BRIEF DESCRIPTION OF THE DRAWINGS 

[0014] Many aspects of the disclosure can be better under 
stood with reference to the following drawings. While several 
implementations and examples are described in connection 
with these drawings, the disclosure is not limited to the imple 
mentations and examples disclosed herein. 
[0015] FIG. 1 illustrates error correction in dead reckoning. 
[0016] FIG.2 shows a diagram illustrating indoor localiza 
tion according to an embodiment of the subject invention. 
[0017|| FIG. 3A shows a process flow for indoor localiza 
tion according to an embodiment of the subject invention. 
[0018] FIG. 3B shows an example process flow for indoor 
localization. 
[00191 FIG. 4 shows a diagram illustrating indoor localiza 
tion according to an embodiment of the subject invention. 
[0020 FIGS.5A-5C illustrate locating a landmark through 
clustering according to an embodiment of the subject inven 
tion. 
[0021] FIG. 6 shows a classification tree for detecting the 
elevators, staircases, and escalators. 
[0022] FIG. 7 shows a plot of magnetic variance. 
[0023] FIG. 8 shows a plot of acceleration versus time. 
[0024] FIG. 9 shows a plot of acceleration versus time. 
[0025] FIG. 10 shows a plot of displacement versus error. 
[0026] FIG. 11 shows a plot of displacement versus error. 
[0027] FIG. 12A shows a schematic diagram of walking 
paths of an indoor location overlaid a photograph. 
[0028] FIG. 12B shows a diagram of a corrected walking 
path. 
[0029] FIG. 13A shows a plot of angle of walking orienta 
tion for a compass and for a gyroscope. 
[0030) FIG. 13B shows a plot of the CDF of the difference 
with ground truth angle for different methods. 
[0031] FIG. 14 shows a plot of clusters identified by a 
K-means algorithm. 
[0032) FIG. 15 shows a plot of number of WiFi OLMs 
versus similarity threshold. 
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[0033] FIG. 16 shows a plot of signal strength versus fre 
quency. 
[0034] FIG. 17 shows a plot of magnetic field versus time. 
[0035] FIG. 18 shows a flow chart of a heading direction 
estimation algorithm according to an embodiment of the sub 
ject invention. 
[0036] FIG. 19 shows a plot of acceleration versus time. 
[0037] FIG. 20A shows a plot of acceleration versus time. 
[0038|| FIG.20B shows a plot of step detector signal versus 
time. 
[0039| FIG. 21 shows a plot of localization error versus 
time using different levels of information. 
[0040] FIG. 22 shows a plot of localization error versus 
time using different levels of information. 
[0041] FIG. 23 shows a plot of the cumulative distribution 
function (CDF) of the sizes of WiFi areas in a building. 
[0042] FIG. 24 shows a plot of acceleration versus time. 
[0043] FIG. 25A shows a schematic diagram of users walk 
ing and periodically encountering landmarks (LMs). 
[0044] FIG. 25B shows a schematic diagram illustrating a 
centroid calculation of a LM. 
[0045] FIG. 26 shows a diagram of walking paths. 
[0046] FIG. 27 shows a plot of y-coordinate of estimated 
LM location versus x-coordinate of estimated LM location. 
[0047] FIG. 28A shows a plot of number of LMs detected. 
[0048] FIG. 28B shows a schematic diagram of LMs. 
[0049] FIG. 29.A shows a plot of OLM localization accu 
racy versus time. 
[0050 FIG. 29B shows a plot of number of OLMs versus 
time. 
[0051] FIG. 29C shows a plot of accuracy versus sensor 
type. 
[0052] FIG. 30A shows a plot of the CDF of localization 
error. 

[0053] FIG. 30B shows a plot of the CDF of localization 
error 

[0054] FIG. 31A shows a plot of localization error versus 
time. 
[0055] FIG. 31B shows a plot of CDF of localization error. 
[0056] FIG. 32 shows a plot of the CDF of localization 
error. 

[0057] FIG.33 shows a plot of distance, velocity, and accel 
eration versus time. 
[0058] FIG. 34A shows a screen shot of a user walking, 
with corresponding values of linear acceleration to the right. 
[00591 FIG. 34B shows a screen shot of a user walking, 
with corresponding values of linear acceleration to the right. 
[00601 FIG. 34C shows a screen shot of a user walking, 
with corresponding values of linear acceleration to the right. 
[0061] FIG. 35A shows a screen shot of a user walking, 
with corresponding values of linear acceleration to the right. 
[0062] FIG. 35B shows a screen shot of a user walking, 
with corresponding values of linear acceleration to the right. 
[0063] FIG. 35C shows a screen shot of a user walking, 
with corresponding values of linear acceleration to the right. 
[0064] FIGS. 36A and 36B show scatter plots of estimated 
angles versus time for example implementations. 
[0065] FIG. 37 shows a plot of the CDF of errors in esti 
mated heading direction. 
[0066] FIGS. 38A and 38B show plots of the angle versus 
time for example implementations. 
[0067] FIG. 39 shows a scatter plot of angle versus time. 
[0068] FIG. 40 shows a CDF plot of error in estimated 
heading direction. 
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[0069] FIG. 41 illustrates a computing system that may be 
used in some embodiments. 

DETAILED DESCRIPTION 

[0070] Techniques and systems for indoor localization are 
described. Through a mobile device running a trace program 
as described herein, a user’s location within a building or 
other indoor environment can be tracked (upon the permis 
sion of the user). The localization—tracking—can be accom 
plished through unsupervised techniques. That is, landmarks 
are not required to be labeled in order for localization to be 
carried out. In the systems described herein, landmarks are 
not labeled upon identification, nor do they need to be. The 
system can recognize a landmark based on the landmark’s 
sensor signature only and need not understand what the func 
tion (if any) of the landmark is within the indoor environment. 
Certain techniques described herein can evaluate an interior 
and a user’s course within the interior through clustering of 
data points indicating possible landmarks. 
[0071] Embodiments of the subject invention provide sys 
tems and methods for unsupervised indoor localization with 
out the need for searching for a WiFi wireless network in a 
geographic location (also referred to as “war-driving”). 
Instead of searching for and relying on WiFi access points that 
may or may not exist in an indoor environment, one or more 
sensors are used to detect and determine the existence of 
identifiable signatures in one or more sensing dimensions. 
[0072] Identifiable signatures can include, for example: an 
elevator, which can impose a distinct pattern on an acceler 
ometer (e.g. an accelerometer of a device, for example a 
mobile device such as a smartphone); a corridor and/or corner 
of a building, which can have a unique or relatively unique set 
of WiFi access points available in range; and/or a particular 
location in a building that has an unusual (i.e. distinct from 
background) magnetic fluctuation. These types of signatures 
naturally exist in the environment of a building, and systems 
and methods of the subject invention can consider these as 
internal, or indoor, landmarks of a building. 
[0073) One or more sensors, for example, those existing on 
a mobile device, can be used detect these landmarks; the 
detected landmarks can then be used to calibrate and/or reca 
librate the location of a user on or near where the sensor(s) are 
located. This calibration and/or recalibration can be part of a 
“dead reckoning” process where the current user position is 
calculated based on a previously determined position and 
known or estimated speeds over elapsed time. The internal 
landmarks determined from the identifiable signatures can 
provide a new “fix” from which a new dead reckoning calcu 
lation may begin. This enables “tracking” of a user. 
[0074] FIG. 1 illustrates error correction in dead reckoning. 
Referring to FIG. 1, a user’s walking path 100 may be esti 
mated. Calculations using only dead-reckoning can have 
error as shown in estimated path 101, so it is advantageous to 
reset calculations along the walking path 100. To estimate the 
user’s location (e.g., performing the dead reckoning with 
known locations along the walking path 100), motion vectors 
can be computed from the recorded sensor reading(s), and the 
location can be computed via dead reckoning projections 
from the last “known” location. 
[0075] The dead-reckoning error can be periodically reset 
using landmarks in the environment. For example, an initial 
fix 110 may be a known location. Then, a first projected path 
111 can be corrected/reset through a first recognized land 
mark 112; a second projected path 113 can be reset through a 
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second recognized landmark 114; a third projected path 115 
can be reset through a third recognized landmark 116; a fourth 
projected path 117 can be reset through a fourth recognized 
landmark 118; a fifth projected path 319 can be reset through 
a fifth recognized landmark 120; and a sixth projected path 
121 can complete a corrected path (110-121). 
[0076] The dead-reckoning can include estimating a move 
ment trace of the user using sensor data, which can be 
obtained from, for example, a mobile device (e.g., cellphone/ 
smart phone; wearable computer). The sensor data used for 
dead-reckoning can be obtained from sensors of the device 
and can include, but are not limited to, data from one or more 
of a compass, an accelerometer, a gyroscope, a magnetom 
eter, a WiFi antenna, a GPS sensor, a microphone, a camera or 
other light sensor, a temperature sensor, a chemical sensor, a 
humidity sensor, a Bluetooth antenna, and/or a barometer. 
The sensor data used for determining the location of the at 
least one landmark can also be obtained from sensors of the 
device and can include but are not limited to data from one or 
more of a compass, an accelerometer, a gyroscope, a magne 
tometer, a WiFi antenna, a GPS sensor, a microphone, a 
camera or other light sensor, a temperature sensor, a chemical 
sensor, a humidity sensor, a Bluetooth antenna, and/or a 
barometer. In various implementations, WiFi, 3G, 4G, LTE 
(Long Term Evolution radio platform), WiMax, GSM (Glo 
bal System for Mobile communications), Bluetooth, near 
field communication (NFC), AM radio, FM radio, and/or 
similar signals can also be used as sensordata for determining 
the walking trace of a user and/or the location of a user and/or 
a landmark. 

[0077|| For reduced power consumption, sensors that con 
sume less energy may be used more frequently than sensors 
that consume more energy. In some cases, the sensor data may 
be entirely or mostly obtained from passive sensors (e.g., 
sensors that do not require battery power for operation). In 
some cases, energy harvesting circuits may be included to 
improve power consumption of a battery of the mobile 
device. 

[0078] The location(s) of a user and/or a landmark can be 
simultaneously or separately determined. This can be done in 
such a manner such that the locations converge quickly. Nei 
ther WiFi search (and mapping) nor floorplans are necessary, 
though certain embodiments can use one or more of these. 
[0079] FIG. 2 shows a diagram illustrating indoor localiza 
tion according to an embodiment of the subject invention. 
One or more users’ motion can be traced using time and 
sensor value data. In operation, a motion trace (200) receives 
sensor data from a user’s device. The user may be moving 
about an indoor area or may be stationary. To determine the 
location of a user, for example to provide targeted advertise 
ments or directions, dead reckoning (210) is performed on the 
sensor data (and time information) using indoor landmarks 
(220) known to the system. 
[0080] The sensor and time values are also analyzed to 
determine whether there is a unique sensor fingerprint (230). 
Where there is a unique fingerprint, a landmark location can 
be ascertained (240). The landmark list can be updated (250) 
to include the new landmark location (and made available in 
the set of indoor landmarks 220 used to perform the dead 
reckoning (210)). In addition, a user’s position information 
can be used to improve estimations of the locations of land 
marks (thus, an output from dead reckoning (210) may be 
provided to find a landmark location (240)). 
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[0081] The motion trace can be implemented as part of an 
application that can run on a mobile device. The application 
can be a client application that communicates with a server to 
retrieve data regarding landmarks. Aggregated data from 
multiple users can be provided to supplement the landmark 
listing and improve estimations of the locations of the land 
marks. 

[0082] According to various implementations, the land 
marks may be known to the system from data collected by 
previous interactions with the user and a particular indoor 
environment, by previous interactions between other users 
and the particular indoor environment, or by current interac 
tions with the user and the particular indoor environment. 
[0083] As one example of landmarks known to the system 
from data collected by previous interactions between the user 
and a particular indoor environment, a user’s computing 
device (e.g., phone) may collect sensor readings as the user 
goes about her or his business. For example, the user may 
walk around a grocery store, library, movie theater, mall, 
university campus, and the like while the user’s computing 
device collects sensor readings in the background and com 
putes landmarks. Later, when the user visits any one of the 
previously traveled places, the landmarks that the user col 
lected (i.e. “personal” landmarks) can now be matched, 
enabling the system to know the user’s location. Self-local 
ization to known landmarks can be performed so long as the 
user has traversed a location once before. 

[0084] As one example of landmarks known to the system 
from data collected by previous interactions between other 
users and the particular indoor environment, two users of the 
system may have personal landmarks for their respective 
grocery stores. If these two users select to share their land 
marks with each other, then each user can go to both grocery 
stores and localize themselves. In further implementations, 
friends on a social media site (e.g., FACEBOOK), employees 
of an office, or even strangers using the subject motion trace 
applications or systems may choose to share their landmarks 
with each other, which generates a repository of landmarks 
that enable each user to receive localization services at any 
place where at least one other user has visited in the past. 
[0085] FIG. 3A shows a process flow for indoor localiza 
tion according to an embodiment of the subject invention; and 
FIG. 3B shows an example process flow for indoor localiza 
tion. A current location data point (300) can be determined 
and sensor data collected (310) to determine a projected loca 
tion via location estimation with existing landmarks (320). 
The estimated location can then be updated (330) and used as 
the current location (e.g., 300) in a recursive manner. The 
current location information can be uploaded or otherwise 
provided to the system along with previous data (340) (which 
may be from the same user or multiple other users). The 
collected sensor data (310) can be used to discover new land 
marks and improve the location estimation of existing land 
marks (350). New landmarks can be added to a landmark list 
360, which is used to perform the location estimation (320). 
Location estimation improvements can be made by incorpo 
rating the landmark indicia and its location along with previ 
ous data from multiple users when discovering new land 
marks and improving the location estimation of existing 
landmarks (350). Location estimation improvement is useful 
because a same landmark may be indicated to be at different 
locations due to error tolerances in the estimations across 

Oct. 1, 2015 

multiple users (e.g., from differences in sensors on those 
user’s devices as well as each user’s stride and/or manner 
isms) 
[0086] According to one implementation, the location esti 
mation with existing landmarks (320) can include, in 
response to receiving sensor data, determining whether the 
floor is changed (321). If sensor information, for example 
from a barometer, indicates that a flooris changed (e.g., a user 
is now on a second floor), the floor information can be 
updated (322). Otherwise, no update (323) to floor informa 
tion is needed. A particular floor may be identified by the 
landmarks on the floor and a determination that the floor has 
changed. The sensor data (and landmark list 360) are also 
used to determine whether the data matches a signature of a 
landmark (324). If there is no matching landmark, direction 
estimation can be performed using one or more of a gyro 
scope, compass, direction flow and the like (325) and distance 
is estimated (326) in order to estimate a new location with 
previous location and current movement (327). If there is a 
matching landmark, a new location is estimated with the help 
of landmark location (328). 
[0087] A matching landmark is also provided to improve 
the location estimation of the existing landmark (351) and the 
improved location estimation is provided to update the land 
mark list (352). The discovering of new landmarks and 
improving the location estimation of the existing landmark 
(350) can also include, in response to receiving sensor data (as 
well as previous data), determining whether there is a new 
landmark indicated by the data (353). No new landmark may 
be found (354), but if there is a determination that a new 
landmark is found, the location of the new landmark is esti 
mated (355) using the previous data as well as the data col 
lected from the sensors. The landmark indicia and its esti 
mated location is provided to updated the landmark list (352). 
[0088] Accordingly, sensor data can be collected and used 
to estimate location (with existing landmarks) and discover 
new landmarks and improve the location estimation of exist 
ing landmarks. Previous data (from the same and/or other 
users) can also be used to discover new landmarks and 
improve the location estimation of existing landmarks. This 
information updates the landmark list, which is also used to 
estimate the user’s location, and the user’s location may be 
used to help improve the location of existing landmarks. The 
location is updated, and sensor data is collected to repeat the 
steps. The process is continuous, with sensor data being col 
lected and used to update the landmark list, while the land 
mark list is also used to estimate the user’s location. 

[0089] According to certain implementations of the subject 
invention, the indoor landmarks (LMs) can be thought of as 
belonging to two different classes, seed landmarks (SLMs) 
and organic landmarks (OLMs). 
[0090 SLMs are certain structures and/or areas in a build 
ing that force users to behave in predictable ways and/or have 
predictable sensor signatures. SLMs can include, but are not 
limited to, entrances, elevators, stairs, and escalators. For 
example, a building entrance can be characterized by a notice 
able drop in a Global Positioning System (GPS) confidence 
when a user moves from an outdoor environment to an indoor 
environment. If a userenters a building and possesses a device 
having an active GPS function, the system can recognize the 
drop in GPS confidence and infer that the user is at an 
entrance. As another example, an elevator can exhibit a dis 
tinct accelerometer signature, emerging from the start and 
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stop of the elevator. If a user uses an elevatorina building, the 
user’s trace can be expected to contain the elevator signature 
embedded therein. 

[0091] OLMs are locations that have recognizable signa 
ture across one or more sensing dimensions. Embodiments of 
the subject invention are based, in part, on the surprising 
discovery that locations within a building that may appear 
generic to the naked eye, offer these signatures that can be 
recognized and used to significantly improve the accuracy of 
indoor localization. One example of such signatures is found 
in the magnetic domain, where metals in a specific location 
may produce unique and reproducible fluctuations on a mag 
netometer near that location. Signatures may additionally or 
alternatively be WiFi-based, for example, where a particular 
location enables a device to get (“overhear”) messages from a 
particular set of WiFi base stations and/or access points (APs) 
that may not be available (e.g., “overheard”) at short distances 
away from that location. Conversely, a “dead” spot, where a 
device may not be able to get any WiFi or GSM/3G signals, 
may function as a signature (e.g., in a building that has WiFi 
and/or cellular access throughout most of the remainder of the 
building). Further, even a water fountain could be a signature, 
such that users that stop to drink water may exhibit some 
common patterns on an accelerometer and/or magnetometer. 
[0092] The nature of an OLM is such that it does not need 
to be known ahead of time (or at all). In an embodiment, a 
threshold can be set within the system to require a signature 
within one or more sensing domains to be different and/or 
repeated across multiple uses of the system. Once a particular 
signature meets the threshold, the system can determine that 
location to be an OLM, and that OLM can then be used to 
improve the indoor localization system during future uses 
whenever that LM’s signature is noted by the system. When 
ever the pattern of a known landmark surfaces on a user’s 
trace, it can be used to reset the location and thereby reset the 
error that may have been accumulated during dead-reckoning 
from the time since the previously known landmark within 
the building was used as the fix. 
[0093] FIG. 4 shows a diagram illustrating indoor localiza 
tion according to an embodiment of the subjectinvention. The 
steps illustrated in FIG. 4 may be implemented as a motion 
trace program executed by a processor. Referring to FIG. 4, a 
user motion trace (400) can carry out indoor localization in 
response to receiving time and sensor data. 
[0094) Dead reckoning (410) can be performed to deter 
mine a user’s indoor location based on known landmarks, for 
example seed landmarks (SLMs) 420 and organic landmarks 
(OLMs) 430 as stored in a database (or data file stored on the 
mobile device). 
[0095] The landmarks may be used as a recognized fix from 
which the dead reckoning calculations are performed. For 
example, the stored signatures of an SLM can be used with no 
prior information about the building in order to track the user. 
That is, in an embodiment, the first SLM identified can be 
used as an origin (or “fix”) from which all other landmarks 
and all traces of the user can be plotted. 
[0096] Whenever the signature of a LM, for example a 
SLM such as an elevator, is recognized, the system can local 
ize the user at that time. The user’s trace can then be estimated 
using dead-reckoning until another landmark signature is 
recognized. In certain embodiments, a floorplan of the build 
ing can be known, such that the location of one or more (or, in 
some cases, all) SLMs can be known. 
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[0097] The sensor data can be used to simultaneously track 
the user through the dead reckoning and to perform unsuper 
vised clustering in an attempt to identify new landmarks 
and/or match up with landmarks already known to the system. 
The sensor data is mined to identify signatures of potential 
new landmarks. These landmarks can help in improving 
localization accuracy during subsequent uses, either by the 
same user or by a different user. 
[0098] The organic landmarks (OLMs) 430 may not be 
known a priori and can vary across different buildings. Thus, 
they may have to be learned dynamically. In an embodiment, 
sensor data can be subjected to a clustering algorithm. 
Accordingly, in addition to performing a dead reckoning 
(410) using known landmarks, the sensor readings over time 
can be used in performing unsupervised clustering (440). Any 
sensor available to the mobile device can individually, and 
even in combination, have its data be used to cluster similar 
readings/values. For example, ambience can be detected 
through WiFi related data 442 and/or accelerometer and mag 
netometer data 444. Activity can be detected through move 
ment data 446 received from gyroscope sensors. Other clus 
tering may be carried out using combination data 448 from 
one or more sensors in combination. 
[0099] The clusters grouped by sensor feature can then be 
analyzed based on location of the cluster members to deter 
mine if the sensor cluster is also spatially clustered (450). A 
spatially clustered sensor feature cluster can be identified as 
an organic landmark location (460) and added to a database of 
organic landmarks 430. The spatial location of the cluster can 
be based on dead-reckoning from a known position (which 
may be a previously identified location). 
[0100] During the motion trace program (400), sensor data 
can be continuously mined to attempt to create new land 
marks, whether a floor plan is known or not, to increase the 
number of landmarks and thereby improve the accuracy for 
future uses of the system. 
[0101] FIGS. 5A-5C illustrate locating a landmark through 
clustering according to an embodiment of the subject inven 
tion. Through clustering, various features of the data can be 
extracted, and the clustering can run on high dimensional 
space. Once the clustering operation has completed, each of 
the resulting clusters can be expected to contain similar sen 
sor patterns. Because each sensor reading can be associated 
with time-stamps, it is possible to find the corresponding 
locations via dead-reckoning. The system can compute these 
locations to check whether all instances of a clusterfall within 
a small area. 
[0102] FIG. 5A shows a matrix of sensor readings collected 
across time. As shown in FIG. 5B, the sensor readings may be 
clustered by feature/characteristics. Then, as illustrated by 
FIG. 5C, if the instances of a cluster fall within a certain area, 
the system can deem the location a new landmark (i.e., a new 
OLM). In an embodiment, the system can accumulate the 
data from multiple users, simultaneously (e.g., on a server 
and/or through a network) and/or over different times, in 
order to improve the accuracy of the landmark location. 
[0103] The dead reckoning scheme of embodiments of the 
invention uses known landmarks to correct the location of the 
user whenever such a landmark is encountered, thereby pro 
viding for a more accurate estimate of the user’s indoor loca 
tion than dead reckoning (the basic calculations) alone. 
[0104] In some implementations dead-reckoning uses 
accelerometer and/or compass data from a device to track a 
mobile user. Based on the accelerometer readings, it is pos 
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sible to count the number of steps a user has walked, and 
therefrom derive the displacement of the user. The direction 
of each of these steps can be tracked using a compass. Merg 
ing these, the ‘displacement, direction, time-tuple forms the 
user’s motion vector. Pivoting these vectors at the landmarks, 
systems and methods of the subject invention can track the 
location of a user. 
[0105] Although the tracking operation may accrue error 
over time (due to, e.g., noisy sensors), the error gets reset 
whenever the user comes across any known landmarks. Thus, 
in the steady state, a user’s localization error can exhibit a 
saw-tooth behavior, such that overtime, the localization error 
can grow and then sharply drop to zero (or close to zero) at a 
known landmark, and this pattern can be repeated. By 
increasing the density of landmarks, the error can be reset 
frequently, thereby curbing the error growth. Embodiments 
of the subject invention can increase the landmark density by 
recognizing all (or almost all) SLMs encountered by a user 
and by extracting OLMs from the indoor environment as 
discussed herein. 
[0106] In an embodiment, WiFi access points can be used to 
partition an indoor space into smaller sub-spaces. Thus, a LM 
signature need not be unique in the entire building; so long as 
it is unique within a WiFi sub-space, it can be recognized 
without ambiguity. 
[0107] The techniques described herein advantageously 
make use of simultaneous localization and mapping. SLMs 
and newly-discovered OLMs can be used to improve dead 
reckoning for subsequent uses, which in turn can improve the 
location estimates of the SLMs/OLMs themselves. This cir 
cular process can push the entire system to better accuracy as 
it continues to improve over time. In some implementations, 
as few as three cycles can establish a sufficient number of 
OLMs. 

[0108] The continuous improvement is based at least in part 
on the following three observations: dead reckoning can 
attain desired levels of accuracy, if periodically recalibrated 
by landmarks; indoor environments can indeed offer the req 
uisite number of landmarks; and the locations of the land 
marks can be computed from rough estimates of multiple uses 
of one or more devices (i.e., the dead-reckoning errors can be 
independent). An indoor environment is rich with ambient 
signals, like sound, light, magnetic field, temperature, WiFi, 
3G, and more. Moreover, different building structures (e.g., 
stairs, doors, elevators, escalators) force humans to behave in 
specific ways. By collecting these sensor signals and analyz 
ing their high-dimensional combinations, signatures emerge. 
Further, these signatures need not be unique in the entire 
building; so long as they are unique within a WiFi sub-space, 
they can be valid LMs. Examples 1-4 discuss these observa 
tions in more detail. 
[0109] In the case that a building’s floor plan is known 
(which is not necessary but can be helpful to visualize the 
user’s location), then the system can infer the locations of 
SLMs, including but not limited to doors, elevators, stair 
cases, and escalators. When a device detects these SLMs 
while passing through them, the device can recalibrate its 
location. In many embodiments, a system includes an SLM 
detection module with defined sensor patterns that are global 
across all buildings. 
[0110] A building entrance can be characterized by a 
noticeable drop in a GPS confidence when a user moves from 
an outdoor environment to an indoor environment. Elevators, 
staircases, and escalators can be identified using inertial sen 
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sors. These sensors have the advantages of being very com 
mon (e.g., they are installed on a large class of smartphones), 
having a low-energy footprint, and being capable of being 
always on during operation of a device (e.g., during smart 
phone operation to detect the change of screen orientation). 
[0111] FIG. 6 shows a classification tree for detecting 
elevators, staircases, and escalators and for separating them 
from walking and being stationary. A false positive leads to 
errors in estimating the location of an SLM while a false 
negative leads to missing an opportunity for recalibration. 
Therefore, high detection accuracy with low false positive/ 
negative rates is important. Referring to FIG. 6, the top level 
separates the elevator 605 based on its unique acceleration 
pattern by determining whether the elevator pattern is 
matched (610). The second level separates the constant veloc 
ity classes (stairs and escalator) from the other two classes 
(walking and stairs) based on the variance of the acceleration. 
In particular, if the variance of the acceleration is low, than the 
variance of the magnetic field is determined (630); otherwise 
the correlation between the Z and Y acceleration is deter 
mined (640). The third level uses the variance of magnetic 
field (630) to separate the escalator 652 from the stationary 
case 654 and the correlation between the Zand Y acceleration 
components (640).to separate between the stairs 656 and 
walking cases 658. 
[0112] A typical elevator usage trace (see inset plot 660) 
can include a normal walking period, followed by waiting for 
the elevator for some time, walking into the elevator, and 
standing inside for a short time. Then, an addition of weight or 
a weight loss occurs (depending on the direction of the eleva 
tor), followed by a stationary period which depends on the 
number of the floors the elevator moved, and another addition 
of weight or weight-loss, and finally a walk-out. To recognize 
the elevator motion pattern, a Finite State Machine (FSM) 
that depends on the observed state transitions can be used. 
Different thresholds can be used to move between the states. 
Embodiments of the subject invention can include thresholds 
that are robust to changes in the environment and can achieve 
false positive and false negative rates of 0.0%. In a particular 
embodiment, false positive rates and false negative rates can 
be 0.6% or less and 0.0%, respectively. In certain embodi 
ments, data from a barometer can be used to determine how 
many floors were traveled by the user in the elevator. That is, 
depending on the pressure when the user entered and exited 
the elevator, the system can determine the number of floors 
(either up or down) traveled by the user. 
[0113] Once an elevator 605 has been separated, it becomes 
easier to separate the classes (escalator 652 and stationary 
654) that indicate with constant velocity (see inset plot 661) 
from the other classes (walking and stairs) that indicate with 
the variance of acceleration (see inset plot 662). To separate 
the escalator 652 from being stationary 654, the variance of 
the magnetic field can be a reliable discriminator (see inset 
plot 663 and 664). A user may sometimes climb up the esca 
lator, but the magnetic variance also differentiates between 
this and an actual staircase-climb. FIG. 7 shows the magnetic 
variance when a user climbs stairs and when a user climbs an 
escalator. Referring to FIG. 7, these two events show differ 
ence magnetic variance patterns. 
[0114] Returning to FIG. 6, once the scenario with constant 
speed (e.g. shown in inset plot 661) is separated, climbing 
stairs 656 and walking 658 can be differentiated. When a user 
is using the stairs 656, the user’s speed increases or decreases 
based on whether the gravity is helping. This creates a higher 
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correlation between the acceleration in the direction of 
motion and direction of gravity as compared to walking (see 
inset plot 665 and 666). Embodiments of the subject invention 
can provide false positive and false negative rates of 0.0%. In 
a particular embodiment, false positive rates and false nega 
tive rates can be 0.0% and 1.8% or less, respectively. 
[0115] In an embodiment, dead-reckoning can include: 
computing a user’s displacement based on accelerometer 
data; and continuously tracking the direction of movement. 
[0116] FIG. 8 illustrates an example plot of acceleration 
verses time. To illustrate suitability of this method, a raw 
magnitude reading of acceleration and magnitude after filter 
ing is shown in the plot of acceleration verses time of FIG. 9. 
As illustrated in FIG. 10, computing displacement by double 
integrating the accelerometer readings does not result in a 
useful result as the difference between the estimated and 
actual displacement reaches more than 100 m only after 30 m 
of actual displacement. This may be attributed to a noisy 
accelerometer, low sampling rate (24 Hz), and jerky move 
ments of the device when carried by a user. 
[0117] In contrast, returning to FIG. 9, a better approach is 
to identify a human-walking signature, which arises from the 
natural up/down bounce of the human body for each step 
taken. To capture this, the signal can be passed through a low 
pass filter, and two consecutive local minima (e.g. 910 and 
920) can be identified. Between these local minima, a local 
maximum 930 can be identified. A calculation can be per 
formed to check whether the difference between the maxi 
mum and minimum is greater than a threshold. If so, the step 
count is incremented. In an embodiment, the physical dis 
placement can be computed by multiplying step count with 
the user’s step size. The step size can be estimated using the 
user’s weight and height, which can be input into the system 
by the user. Employing a fixed step size across all users can be 
erroneous, but systems and methods of the subject invention 
can infer step size by counting the number of steps for a 
known displacement (e.g., between two landmarks). Refer 
ring to FIG. 11, it is shown that the error accumulated using 
these techniques is low. A step count accuracy of 98% or 
higher can be obtained. 
[0118] In an embodiment, readings from a gyroscope can 
be used to infer a user’s movement direction(s). The gyro 
scope may be decoupled from the magnetometer sensor, and 
hence, can be insensitive to ambient magnetic fields. The 
gyroscope, though, gives relative angular velocity in the form 
of a 3D rotation matrix. When multiplied by a time interval, 
this yields the relative angular displacement (RAD) of the 
device having the gyroscope. The RAD is with respect to a 
direction that is not necessarily the absolute direction, so the 
user’s motion path using the gyroscope can be biased by the 
error in their initial direction. FIG. 12A shows a schematic 
diagram of walking paths, and FIG. 12B shows a diagram of 
a corrected walking path. Referring to FIG. 12A, using the 
gyroscope alone can give rotated versions of the true path. 
Referring to FIG. 12B, encountering landmarks can help infer 
this bias and therefore correct for it. 
[0119) Referring to FIG. 12B, considera user encountering 
a known landmark L. at time t1, and later anotherlandmark L., 
at time t3. The system can identify that the user encountered 
these two landmarks because the signatures matched, and 
hence, regardless of the dead-reckoned estimates, the system 
can determine the user’s path at these locations. Let 0 denote 
the angle between the line joining L1, L2 and the line joining 
L1, X2, where X2 is the dead-reckoned estimate at time t3. It 
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can be observed that 0 is the initial bias, and therefore, the 
system can rotate the entire motion segment by 0. The same 6 
can be used to track the user for the subsequent motion seg 
ment (e.g., until the user encounters landmark LA) at which 
point the bias can again be updated. This process of learning 
and updating the bias at every landmark leads to stable and 
consistent results. The remaining issue relates to tracking the 
user until the second landmark is encountered. During this 
phase, the dead-reckoning error can be arbitrarily high. In one 
embodiment, a compass can be used during the initial phase 
when the gyroscope bias is still unknown. Magnetic field 
fluctuations may degrade the results from the compass, so the 
gyroscope and compass readings can be juxtaposed. 
[01201 FIG. 13A shows a plot of angle of walking direction 
for a compass and for a gyroscope. Referring to FIG. 13A, 
whenever the trends for a device having a compass and gyro 
scope are correlated, the compass value can be selected as the 
direction of motion. The gyroscope’s bias can be inferred and 
used thereafter. Correlated trends in compass and gyroscope 
can be an indicator of proper compass readings, and if the 
compass is not reflecting the gyroscope’s trend, it may be 
affected by other factors. FIG. 13B shows a plot of the cumu 
lative distribution function (CDF) of the difference with 
ground truth angle for using gyroscope and landmarks, using 
compass only, and using compass and gyroscope. Referring 
to FIG. 13B, the compass helps with the initial phase, while 
gyroscope based dead-reckoning proves to be effective. This 
novel method of leveraging gyroscope readings for indoor 
dead-reckoning provides surprisingly good results. 
[012.1] While tracing a user within an indoor environment, 
data may be collected for generating new OLMs. Discovering 
OLMs can include: recognizing a distinct pattern from many 
sensed signals; and testing whethera given pattern is spatially 
confined to a small area. Referring again to FIG. 5A, sensor 
readings can be gathered in a matrix; element <ij- of the 
matrix contains sensor readings from device i at timej. These 
sensor readings are essentially features of the raw sensed 
values (from e.g., an accelerometer, a compass, a gyroscope, 
a magnetometer, and/or WiFi). 
[0122) Features for the magnetic and inertial sensors 
include, but are not necessarily limited to, mean, max, min, 
variance, and mean-crossings, while for WiFi, features can 
include, but are not necessarily limited to MAC ID (media 
access control identifier) and RSSI (received signal strength 
indicator). In an embodiment, the system can normalize these 
features between [-1, 1] and feed them to a K-means cluster 
ing algorithm. Other clustering methods, such as Expectation 
Maximization (EM) clustering, may be used. The clustering 
can be executed for each individual sensing dimension, as 
well as their combinations (e.g., accelerometer and compass 
together). FIG. 14 shows a plot of clusters identified by a 
K-means algorithm. Referring to FIG. 14, clusters from an 
example of magnetometer readings for K=3 are shown. For 
FIG. 14, the value of K was varied, and the clusters were 
recorded in each case. 

[0123] Clusters that have low similarity with all other clus 
ters can be identified, and such clusters can suggest a good 
signature. For this, the correlation between a given cluster and 
all other clusters can be computed. If the maximum correla 
tion is less than a similarity threshold, the cluster can be a 
candidate to be an LM. In an embodiment, in order to qualify 
as an OLM, a candidate cluster must also be confined to a 
small geographical area. Members of a cluster can be tested to 
determine if they are within the same WiFi area (i.e., they 
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overhear the same WiFiAPs). Many WiFi areas are large, so 
for clusters within a WiFi area, the dead-reckoned locations 
for each of their members can be computed. If locations of all 
cluster-members are within a small area (e.g., 4 mº), then this 
cluster can be considered an OLM. The different sensing 
dimensions can require some customization. 
[012.4] For WiFi LMs, MAC addresses of WiFi APs and 
their corresponding RSSI values can be used as features. To 
remain robust to signal variations, which can alter the set of 
overheard APs, APs that are stronger than a threshold RSSI 
can be considered. Applying K-means clustering can identify 
small areas (e.g., 4 m or smaller) that have low similarity 
with all locations outside that area. In an embodiment, the 
similarity of two locations, 11 and 12 can be computed as 
follows. Denote the sets of WiFiAPs overheard at locations 11 
and 12 as A1 and A2, respectively. Also, let A=AUA2. Let f(a) 
denote the RSSI of AP a, aeA, overheard at location 1, ifa is 
not overheard at then f(a)=0. Similarity Se|0, 1], between 
locations 1, and 12 can be defined as: 

1 v min(fi (a), f(a)) 
S = – X — |A| 2. max(fi (a), f(a)) 

[0125] The rationale for this equation is to add proportion 
ally large weights to S when an AP’s signals are similarly 
strong at both locations, and vice versa. S can be thresholded 
on to define a WiFi landmark. For example, a threshold of 0.4 
can be chosen, indicating that all locations within the WiFi 
landmark need to exhibit less than 0.4 similarity with any 
other location outside the landmark. Such a strict threshold 
can ensure that landmarks are quite distinct, but can also 
reduce the number of possible landmarks. FIG. 15 shows a 
plot of number of WiFi OLMs versus similarity threshold. 
The tradeoff is illustrated using traces from two Duke Uni 
versity buildings, Computer Science and Engineering. As 
shown in FIG. 15, it can be observed that 0.4 is a reasonable 
cut-off point, balancing quality and quantity of WiFi OLMs. 
FIG. 16 shows a plot of signal strength versus frequency, and 
is one example of data that may be used to help determine 
WiFi LMs. 

[0126] Indoor environments are characterized by at least a 
few turns (e.g., at the end of corridors, into offices, class 
rooms, stairs, and more). Because a gyroscope can provide 
reliable angular displacements, such turns can be used as 
OLMs. In an embodiment, a special feature can be consid 
ered, referred to as a bending coefficient. The bending coef 
ficient is used to capture the notion of path curvature, com 
puted as the length of the perpendicular from the center of a 
walking segment to the straight line joining the endpoints of 
the segment. The bending coefficient can be computed over a 
sliding window on a user’s walking path, and this can be used 
as a separate feature. When bending coefficient and WiFi are 
clustered together as features, similar turns within a WiFi area 
can gather in the same cluster. The turns in the cluster could 
still be doors of adjacent classrooms in a corridor; these turns 
may very well lie within the same WiFi area. To avoid coa 
lescing all these turns into the same landmark, the system can 
check if the cluster is confined to within a small area (e.g., 4 
m” or less), and the cluster can then be declared a landmark. 
[0127] Magnetic landmarks can be derived through similar 
techniques. As long as the magnetic signature is unique 
within one WiFi area, and the sensed locations are spatially 
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confined within a small area (e.g., 4 mº), it can be deemed as 
a magnetic OLM. FIG. 17 shows a plot of magnetic field 
versus time. Referring to FIG. 17, an example is shown where 
the magnetic field near a networking lab demonstrates a 
unique distortion. 
[0128] Systems and methods of the subject invention can 
use SLMs and OLMs to reset dead-reckoning error and track 
a user. The improved dead-reckoned paths can help in refining 
the landmark locations because different paths offerindepen 
dent estimates (possibly independently erroneous estimates) 
of a specific landmark. Combining these independent errors 
can produce the refinement, based at least in part on the law of 
large numbers, where the sampled mean converges to the true 
mean for a large number of samples. In an embodiment, 
estimates of a landmark, say L, can be combined as follows. 
One approach could be to compute the centroid, but also the 
observation that all estimated locations may not be equally 
incorrect can be taken advantage of Consider two users who 
arrive at L, from landmarks L, and Le respectively. If L, is 
closerto L, than Lºis, then the user that walks from L, is likely 
to have incurred less error. This is because pure dead-reckon 
ing accumulates error over time. Thus, accounting for this 
confidence in landmarkestimates, a weighted centroid can be 
computed. The result can be declared as the location of the 
landmark. 
[0129] Systems and methods of the subject invention do not 
require a floor plan of the building in which indoor localiza 
tion is performed. In many embodiments, only one ground 
truth location of any SLM is needed. Such an SLM location 
could be, for example, the location of an entrance, a staircase, 
or an elevator. Once the location (e.g., GPS coordinates) of 
one SLM is known, the rest of the SLMs and OLMs can be 
organically grown, using this known coordinate as the origin 
(or as any other coordinates). Importantly, the location of this 
original SLM (e.g., the building’s entrance) needs to be 
learned only once when the system is used for the first time. In 
the steady state, even if users do not know when they are 
passing through the entrance, their locations can become 
known once they encounter a landmark. The same is true 
when a user enters through a different entrance of the build 
ing, or turns on a device running the system at sometime after 
the user is inside the building. The localization service can 
activate once the first landmark is encountered. In a particular 
embodiment, the GPS location of a building entrance can be 
determined (e.g., from Google"M Satellite View). A user can 
activate the system when entering through this entrance or the 
system could already be active when entering. In an alterna 
tive embodiment, the entrance location can be collected by 
other means, or even estimated from locations where GPS 
fixes are lost (e.g., after entering a building). Obtaining the 
GPS coordinate of one SLM, just one time, is not difficult in 
practice. 
[0130] Systems and methods of the subject invention can 
use activity-based landmarks. For example, a busy coffee 
shop may invariably have a queue, or visiting a restroom may 
have a unique signature. These activities can very well be 
LMs as long as their patterns surface upon clustering. Even 
temporary landmarks can be learned by the system (e.g., 
queue exists between noon and 2:00 PM only), and even 
unlearned if the queuing behavior disappears (e.g., during 
winter vacation). 
[0131] In an embodiment, early users of a system and/or 
method can help with localizing OLMs and bring the system 
to convergence. However, this is not war-driving because the 
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early users behave naturally and do not collect ground truth 
(since they do not need GPS). In fact, they collect exactly the 
same sensor readings as all other users. The only difference is 
that the early users may experience less localization accuracy 
(see also Example 7). The process of war-driving, on the 
contrary, is associated with the notion of (ground truth) cali 
bration, which naturally requires additional equipment. 
[0132) LM signatures may vary across smartphone plat 
forms. In an embodiment, data gathered from smartphones 
can be indexed by the phone’s make and model, and LM 
signatures can be detected for each distinct model. Thus, a 
phone can download LM signatures that are specific to its 
hardware and/or software, and run the system for localization. 
Of course, the system can be used on a device for which no 
previous data has been gathered, as discussed herein. 
[0133] In many embodiments, the systems and methods 
avoid using sensors that have a high energy footprint, e.g., 
light and sound. In an embodiment, a system can incremen 
tally turn on sensors, depending on the density of LMs avail 
able in the environment. For example, if a wing of a building 
has numerous landmarks, the system could turn off the mag 
netometer, and use only the accelerometer- and compass 
based landmarks for localization. 
[0134] Systems and methods of the subject invention do not 
require periodic GPS fixes, and instead may only require a 
one-time global truth information (e.g., the location of a door, 
staircase, and/or elevator). The entire system can operate 
from this. The systems are infrastructure-independent and do 
not require calibration (though calibration may be per 
formed). GPS coordinates can be replaced with indoor land 
marks; the ability to identify these landmarks in an unsuper 
vised way enables indoor localization with no war-driving 
(and no calibration required). Ambient signatures realized 
from sensor data enables identification of LMs, which allows 
for improved dead-reckoning in an indoor environment. 
[0135) Embodiments of the subject invention are also 
drawn to systems and methods for determining or estimating 
the heading direction of a user of the system. Such heading 
direction estimation techniques can be used in the indoor 
localization systems and methods described herein (e.g., dur 
ing the dead-reckoning phase of indoor localization). 
[0136) Determining moving direction with the inertial sen 
sors of a mobile device (e.g., a cellular telephone) is a prob 
lem in the field of location service. Use of a compass alone 
cannot solve this problem because a device’s compass cannot 
adapt with orientation change. GPS works successfully in an 
outdoor environment but is not suitable for an indoor envi 
ronment. Dead-reckoning needs to know a device’s initial 
orientation, and over time error grows. Systems and methods 
of the subject invention can calculate the heading direction 
without any user intervention and are accurate and can be 
implemented on a light-weight device. They can work as a 
generic system and are not restricted by any strict requirement 
for its function. 
[0137] In an embodiment, a system includes a computer 
readable medium having computer-executable instructions 
for performing a method comprising estimating the indoor 
location of a user of the system. Estimating the indoor loca 
tion of the user can include performing dead-reckoning using 
sensor data and determining the location of at least one land 
mark using sensor data. The system can include an app run 
ning on a mobile device of a user of the system. The app can 
run completely locally on the mobile device or can commu 
nicate with one or more other devices (e.g., a server and/or 
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computing devices such as computers and/or mobile 
devices). Such communication can be accomplished over a 
network, such as a WiFi network or cellular network, though 
embodiments are not limited thereto. 

[0138] Sensor data obtained by the mobile device of the 
usercan be stored locally on the mobile device, on a server, on 
other computing devices in communication with the user’s 
mobile device, or some combination thereof. In a particular 
embodiment, sensor data is collected over a network from 
multiple uses of the system (e.g., from a same user that 
navigates an indoor location multiple times or from multiple 
users each using a mobile device which may be different from 
that of other users) and stored on a server. Then, a user of the 
system can access the data previously collected, which can 
help improve the accuracy of the indoor localization of that 
llSer. 

[0139] According to many embodiments of the subject 
invention, no war-driving is performed. In certain embodi 
ments, no calibration of any kind is performed. Instead, the 
first user of a system can use a mobile device to obtain sensor 
data, and the system can start “from scratch” to begin to build 
a map of the indoor environment while simultaneously esti 
mating the indoor location of the user. For example, the 
system can identify an SLM (e.g., an entrance, a staircase, an 
elevator, or an escalator) and use that SLM as a reference 
point for all localization of both the user and future identified 
LMs within that same indoor environment. 

[0140] In an alternative embodiment, a calibration process 
can be performed. For example, a user can move around the 
indoor environment (e.g., to multiple floors using an elevator 
or a staircase) and inform the system (e.g., through the use of 
an app running on the mobile device) of the user’s location at 
least one location. The user can inform the system by, for 
example, talking to the mobile device, which can accept the 
data through a microphone, or through data entry using a 
physical or virtual keyboard. After this calibration process, 
the system can determine the user’s location relative to either 
determined LM data (e.g., SLM data) or relative to data 
provided by the user during calibration. 
[0141] If the calibration process is performed, the system 
can (surprisingly) accurately predict the user’s location (after 
calibration) using sensor data from only a compass and an 
accelerometer. Though, sensor data from other types of sen 
sors can help to provide even more accurate estimation of the 
user’s indoor location. This calibration process is not war 
driving. In a particular embodiment, the calibration process 
can include using GPS data from the mobile device as the user 
moves around the indoor environment. 
[0142] Systems and methods of the subject invention pro 
vide unsupervised indoor localization. LMs are not labeled 
upon identification, nor does the system require this for accu 
rate localization. The system can recognize a LM based on its 
sensor signature only and need not understand what the func 
tion (if any) of the LM is within the indoor environment. 
[0143] In an embodiment, a system can include a computer 
readable medium having computer-executable instructions 
for performing a method comprising estimating the location 
of a user in an indoor environment by estimating the move 
ment trace of the user within the indoor environment using 
first sensor data, and identifying at least one landmark within 
the indoor environment using second sensor data. The first 
sensor data can be the same as, overlap with to some extent, or 
be different from the second sensor data. The method is 
unsupervised, such that the at least one landmark does not 
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need to be labeled by the system and, in many embodiments 
is not labeled by the system. The system can include a mobile 
device, and the mobile device can include the computer 
readable medium. The mobile device can be carried by the 
user. In many embodiments, the method does not include any 
war-driving. 
[0144] In certain embodiments, the system includes a 
server in communication with the mobile device of the user, 
and the server can store sensor data obtained by the user 
and/or by other users of the system. Sensor data stored on the 
server can be used to improve indoor localization within the 
same indoor environment over time. As more sensor data is 
collected, the number of LMs and the accuracy of the location 
of LMs within an indoor environment will improve due to 
larger sample sizes. This data can be used by subsequent users 
of the system to improve their location estimation, which can 
in turn refine the location of LMs even more, leading to even 
more accurate location estimation for subsequent users, and 
so on. This recursive process provides very accurate estimates 
of indoor location of both users and LMs and does not take 
many uses to show its effect. 
[0145] In certain embodiments, the system can be run 
locally on the mobile device of the user, and the mobile device 
can store sensor data obtained by the user. Sensor data stored 
on the mobile device can be used to improve indoor localiza 
tion within the same indoor environment over time. As more 
sensor data is collected, the number of LMs and the accuracy 
of the location of LMs within an indoor environment will 
improve due to larger sample sizes. This data can be used 
during subsequent uses of the system to improve location 
estimation, which can in turn refine the location of LMs even 
more, leading to even more accurate location estimation dur 
ing subsequent uses, and so on. This recursive process pro 
vides very accurate estimates of indoor location of both the 
user and LMs and does not take many uses to show its effect. 
[0146] It should be understood that user privacy can be 
maintained even though a user’s path is being traced. Privacy 
mechanisms can include removal of personal data (or non 
recording of personal data) before providing user sensor data 
and/or results to the system. 
[0147| In a further embodiment, a user concerned about 
privacy but wanting to take advantage of previous sensor data 
collected by other users of the system can connect to a server 
having sensor data stored for an indoor environment, down 
load the stored sensor data, and disconnect from the server. 
The system can then be used offline while maintaining the 
advantage of using sensor data obtained from previous users. 
The user can later reconnect to upload sensordata obtained by 
that user or can choose not to do so. The user’s sensor data can 
be kept private even if that user connects again to the serverto 
download updated data from other users regarding the same 
or a different indoor environment. 
[0148] In yet a further embodiment, a user can share sensor 
data with a select other user or group of other users. For 
example, this can be done directly between two or more 
mobile devices (the main user and the “other” user(s)), 
through an application (e.g., a social media application), or 
over a local area network (LAN) or intranet (e.g., using WiFi 
or otherinternet or cellular signal). The users sharing data can 
benefit from the sensor data from the other users to improve 
the accuracy of indoor localization. 
[0149] Systems and methods of the subject invention con 
tinuously improve the accuracy of the location of LMs, and 
therefore the accuracy of indoor localization for the user, over 
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time. Each time the system is used, further sensor data is 
obtained, which can be used to improve LM location estima 
tion. Over a period of time, an extensive library of LMs for a 
wide range of indoor environments can be collected and used 
for accurate indoor localization for a user over a vast array of 
environments. This is true for the case where all data is stored 
locally but especially true for the case where sensor data from 
multiple users is stored together (e.g., on a server). 
[0150] In certain implementations, a heading direction esti 
mator can be included. A heading direction estimator can be 
used to determine an estimate of the heading direction of 
movement of a user (e.g., a pedestrian) using sensor data 
obtained from a device (e.g., a mobile computing device such 
as a smart phone). Such a device can be carried by the user. 
The system does not make any assumptions on the orientation 
of the device; rather it is aware that the device will change its 
orientation during the movement. The heading direction of 
non-pedestrian locomotion can also be estimated (e.g., swim 
ming, skating, running) As long as the motion is repetitive, an 
accurate estimate can be obtained. Locomotion including 
periodic movement of the limbs can lead to especially accu 
rate estimates. 
[0151] A device having sensors used for heading direction 
estimation according to certain embodiments of the subject 
invention can be, for example, mobile and/or wearable com 
puting devices equipped with 3-axes sensors, which are 
capable of sensing the movement, acceleration, and rotation 
of the device, though embodiments are not limited thereto. 
Other sensors, such as a magnetometer, can be used to obtain 
a global reference for the heading direction, but the calcula 
tion of the heading direction itself is not dependent on it. 
[0152] In an embodiment, a system or method of estimating 
the heading direction of a user can include: analyzing the 
forces applied to a device due to the movement of various 
body parts during locomotion; identifying the heading force; 
determining the heading plane; estimating the heading angle; 
and providing an output that estimates the heading direction 
of the user. The user can be, for example, a pedestrian. The 
device can be, for example a mobile device such as a smart 
phone. 
[0153] Any object, including the human body, moves as the 
effect of forces, and the change in velocity of that object 
happens in the direction of these forces. Therefore, the direc 
tion of the forces can potentially indicate the direction of the 
movement of the object. Short term and long term heading 
direction can differin bipedal locomotion; the body can move 
towards the left and right with the steps taken with the left and 
right legs, respectively. However, these movements can be 
compensated by each other, such that the body moves towards 
the resultant direction after a significant number of steps. This 
can help to compensate for possible error that can be pro 
duced in finding long term heading direction for bipedal 
locomotion. 

[0154] Even the simplest form of human locomotion 
involves various forces applied in multiple directions. There 
fore, the identification of the heading force that is applied to 
the direction of movement can be useful in estimating head 
ing direction. The heading force can depend on the type of 
movement and may not be unique. In an embodiment, repeti 
tive patterns and energy in the sensor data can be identified to 
determine the type of the movement (e.g., walk or run) and the 
placement of the device (e.g., in a pocket, in a hand). Each 
repeated block of data in the sensor data can correspond to 
one full cycle in the movement. Each block can be analyzed to 
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identify the portion of the data that represents the heading 
force. Acceleration shows the direction of force, so acceler 
ometer data can be used to determine the direction vector for 
the heading force. 
[0155| Also, in certain embodiments, it is assumed that 
movement is restricted to the two-dimensional horizontal 
plane. This can be the case even though the direction of 
heading force can be determined in three-dimensional space. 
The plane perpendicular to gravity can be used as the global 
horizontal plane, and this is not dependent on the orientation 
of the device. The gravity vector can be calculated from 
sensor data (e.g., from multiple sensors) to separate gravita 
tional acceleration from accelerometer data. This process can 
be customized for various types of movements to obtain bet 
ter results. 

[0156] To estimate the heading direction with reference to 
the earth’s magnetic north, the heading direction estimator 
can projects the heading vector and the magnetic field vector 
on the global horizontal plane. It can then calculate the 
directed angle between these two projected vectors to obtain 
the heading angle of the user. 
[0157] In certain embodiments, supporting techniques can 
be used in the estimation of heading direction. Because the 
hands and legs are connected to the body with the ball and 
socket joints, they can exhibit partial rotational motion during 
movement of the body. A technique of the subject invention 
can exploit this partial motion to determine the axis of rota 
tion by analyzing sensor data (for example, gyroscope data). 
The cross product of this axis of rotation can be taken with the 
gravity vector, and the direction of the resultant vector points 
towards the direction of movement. In another supporting 
technique, the heading direction estimator can apply specific 
rotation of data from a three-axis accelerometer to minimize 
the effect of gravity in this data and can estimate the heading 
direction from this modified accelerometersensordata. These 
supporting techniques can help the heading direction estima 
torproduce a stable and more accurate estimate of the heading 
direction of a user. 

[0158] Because the heading force calculated by the heading 
direction estimator can point the direction in three-dimen 
sional space, the direction of movement can be determined in 
three-dimensional space. This can be helpful in identifying 
the heading direction when the user is climbing stairs, using 
an elevator, and in other scenarios where the movement is not 
restricted to the horizontal plane. Also, a machine-learning 
based technique can be used to improve the response time of 
the heading direction estimator system. Because different 
types of movement in human locomotion follow a series of 
specific movements in various body parts, the system can 
learn this sequence of movements and predict the final head 
ing force to determine the change in heading directions in 
advance. 

[0159] The system can empirically determine various 
parameters for this technique overtime. Moreover, the system 
performance can be improved by fast estimation of the direc 
tion change after the user takes a turn. The movements for 
turns can leave specific signatures in the output of the sensors 
that are sensitive to force and rotation. Therefore, the angle of 
the turn can be estimated by analyzing the data from such 
sensors, and current heading direction can be adjusted with 
this angle to get the direction after the turn. In addition, 
systems and methods of the subject invention for heading 
direction estimation can be used with multiple devices (e.g., 
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located at various parts of the body of the user). Such a 
network of devices can lead to fast and accurate estimation of 
heading direction. 
[0160] Techniques are described that can calculate or esti 
mate the heading direction of a pedestrian. The variation of 
force during normal human walking is focused upon, and this 
property is captured with the help of one or more inertial 
sensors of a device possessed by the user. The systems and 
methods are not affected by the orientation of the device (e.g., 
a smartphone). The performance of the system does not 
depend on the holding style or location of the device on the 
body. Direction of movement can be determined in real time, 
and the complete system can be implemented in a regular 
smartphone. No bootstrapping is required, and results can be 
provided at each step of a walk. The estimated heading direc 
tion can have an average error of for example, six degrees or 
less. This erroris considerably less than the error of at least 12 
degrees displayed by related art heading direction estimators. 
[0161] The moving direction of a pedestrian carrying a 
device (e.g., a smartphone) can be determined by analyzing 
the forces experienced by the device because of various 
movements during the walk. These forces do not depend on 
the orientation of the phone. Therefore, the algorithm is inher 
ently free from any error generated by the orientation of the 
phone. Moreover, the performance of the system does not 
depend on the holding style or location of the phone on the 
body. The algorithm can determine the direction of movement 
in real time, and, because of its low complexity, the complete 
system can be implemented on a smartphone (or wearable 
computer e.g., watch-based or glasses-based). No bootstrap 
ping is required, and results can be produced with the granu 
larity of each step of a walk. 
[0162] Heading direction can be computed by first deter 
mining gait cycle of the user and its various phases. Then, the 
time frame when the device was under the influence of the 
forward force can be determined. The acceleration under that 
time frame can point to the heading direction of the user. The 
direction vector can be determined from the accelerometer 
data and thus give the vector that represents the heading 
direction in three-dimensional space. This raw heading can 
then be projected on the desired plane of movement and 
compensated for possible errors introduced by lateral move 
ments of bipedal locomotion. The gait cycle determination 
process can depend on various features obtained from the 
inertial sensor data. It can depend on the part of the body the 
device is placed. To deal with this, the system can distinguish 
between various usage patterns or motion modes of the device 
with the help of a novel motion mode detection algorithm. In 
one implementation, this algorithm can depend only on the 
various time domain features to accurately determine the 
motion mode of the device. In another implementation, both 
time domain and frequency domain features may be used. 
[0163] FIG. 18 shows a process flow for estimating a head 
ing direction according to an embodiment of the subject 
invention. Referring to FIG. 18, sensor data is collected 
(1810). Because the pedestrian movement analysis does not 
need very high frequency signals and sampling at higher rates 
includes high frequency noise in the data, in an embodiment, 
the data collection can be limited (e.g., to a constant rate of 25 
samples per second or less). The collected data 1811 goes to 
the motion mode detection module (1820) and a buffer mod 
ule (1830) in parallel. A low pass filter module (1840) can be 
included to remove noise from the sensor data 1811 before 
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sending it to the buffer 1830 as filtered data 1841, whereas the 
motion mode detection module (1820) can work with the raw 
sensor data. 
[0164] A step detection module (1850) can receive data 
from the motion mode detection module (1820), with infor 
mation about the motion mode 1851, and can estimate the 
timings “step timings” 1852 for the sensor data that corre 
spond to the heading vector. The algorithm can obtain the 
heading direction vector and the compass direction vector 
from the buffered sensor data 1853 and feed it to the heading 
direction calculation module (1860) for generating the head 
ing angle 1861. Then, the post-processing module 1870 can 
compensate for the errors in generated heading angle and 
produce the final result 1871. 
[0165] The motion mode detection algorithm (1820) can 
determine various use patterns. The algorithm can be based 
on the energy and various time and frequency domain fea 
tures of an accelerometer signal. The energy of the acceler 
ometer signal alone can provide coarse division between high 
and low intensity activities. The high intensity activities can 
include, as an example, a walk with the phone in swinging 
hand or pants pocket. The low intensity activities can include, 
as examples, stationary position, walking with phone on palm 
top (holding in front such as to interact with the phone), and 
walking with phone in shirt pocket. The activity identification 
with energy detection alone may not be precise. For example, 
energy detection may fail to distinguisha walk with the phone 
on the palm top from texting in the stationary position. The 
system can use the results from motion mode to accurately 
identify the timing of the steps, as the phone shows significant 
diversity in the sensor data depending on the use pattern. In 
one embodiment, the motion mode detection module can 
recognize at least the following cases: 
[0166] Case 1: The phone (or other device) is held in the 
hand that swings naturally during the walk. 
[0167] Case 2: The phone (or other device) is in any of the 
pockets of the pants. 
[0168] Case 3: The phone (or other device) is on the palm 
top or held in way so that the user can use it. The user can 
watch something on the screen and click or type on it. How 
ever, the motion detection algorithm does not assume that the 
screen will always face the user. It considers the use pattern to 
be Case 3 as long as the user holds the phone in hand to restrict 
its natural movement. It does not put any constraint on the 
orientation of the phone. 
[0169] Case 4: The motions when the phone (or other 
device) experiences a sudden jerk. For example, the user 
raises the hand that holds the phone (phone or other device). 
[0170] Case 5: The phone (or other device) is in a jacket 
pocket of the user. 
[0171] Case 6: The phone (or other device) is in a belt clip 
of the user. 
[0172] Case 7: The phone (or other device) is in a bag 
carried by the user. 
[0173] Case 8: All other low energy random movements. 
[0174] To achieve more granularity in activity recognition 
without the need for frequency domain features, the periodic 
nature of the accelerometer signal during a walk in the time 
domain can be focused on. FIG. 19 shows a plot of accelera 
tion from the x-axis versus time of an example signal. Refer 
ring to FIG. 19, the accelerometer signal shows the periodic 
ups and downs according to the steps taken by the user. This 
feature is strongly connected with the walk or run and does 
not appear in the signal for any other normal activity with the 
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phone. The accelerometer signal can be processed to locate 
the “positive zero crossing” in order to capture this periodic 
nature in a feature. “Positive zero crossing” data is actually a 
series of values that represents the times when the signal 
crosses (or touches) the value zero line from the negative side. 
Given the points of the signal are represented by the time and 
acceleration pair, ºt, agº, a point tz, in the positive zero 
crossing is calculated with the following formula: 

Wa; : 0 and air 1 - 0 
Gill – Cl; 

[0175] The mean and standard deviation of the positive 
zero crossing values over a window are the two features, 
which together with the power of the accelerometer signal 
distinguishes between five different modes of user activity 
required for the algorithm. The walk leaves a periodic effect 
on the accelerometer value, and the zero crossing values are 
also regular in the case of walking, compared to any other 
random activities (e.g., texting). Thus, a very low standard 
deviation of zero crossing values indicates an action involv 
ing repetitive patterns, such as walking or running. However, 
this feature is not prominent in all three axes of the acceler 
ometer for all the time. Depending on the gait and orientation 
of the phone, an axis of the accelerometer may not have 
expected positive zero crossing value. 
[0176] Fortunately, in the Cases 1-8 at least one axis shows 
consistent standard deviation values. This feature can be used 
to distinguish between Case 3 with a relatively stable phone 
and some random low intensity activity when the user is not 
walking. The mean value of the positive zero crossing values 
over a window provide an estimate of the time interval of the 
repetition. In high intensity activities, the low mean value 
signifies Case 2, and a high mean value is for Case 1. The 
algorithm first categorizes the quick, random jerk, high inten 
sity activity and low intensity activity by looking to the total 
energy level of the accelerometer signal from all three axes. In 
the next step it uses the standard deviation and mean of the 
zero crossing values of the accelerometer to distinguish 
between various cases of user activities as discussed herein. 
[0177) Once motion mode is determined, step detection 
(1850) helps the algorithm determine the status of the gait 
cycle. Various movements of the body during a walk leave an 
impact on the three axes of the accelerometer data. If the 
device is on the right side of the body, it experiences higher 
impact from the movement of the right limbs than that of the 
left. The reverse is also true. The side of the body on which the 
device is placed can be called the “primary side”, and the 
other side can be called the “secondary side”. 
[0178] Detecting the beginning and ending of a gait cycle 
generally involves the detection of the point in time when the 
primary leg touches the ground. This event has a significant 
impact on the accelerometer value, as it delivers a sharp jerk 
to the device. During all other time the values from the dif 
ferent axes of the accelerometer may or may not be correlated 
depending on the orientation of the device, but at the ground 
touch of the primary leg, all the three axes reach a high value 
simultaneously. FIG. 20A is a plot showing acceleration in all 
three axes versus time. Referring to FIG. 20A, the linear 
acceleration signals from all three axes simultaneously reach 
extreme values when the primary leg touches the ground 
during the walk. This key observation can be exploited to 
create another intermediate signal, which can be used for the 
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primary step detection in the algorithm (for detection 1850). 
To generate the step detector signal, the absolute values from 
individual axes can be taken and added together. The enve 
lope of this summation can be taken to get the step detector 
signal. Thus, a signal can be obtained that shows the point 
when all three axes of the accelerometer give a very high 
value together. The local peaks of the step detector signal 
indicate the ground touch of the primary leg. FIG.20B shows 
a plot of step detector signal versus time. Referring to FIG. 
20B, the peaks in the step detector signal indicate the timings 
of the primary steps. A peak detector algorithm can be run to 
determine the timing of the steps. 
[0179] The time between two primary steps (e.g. 2001 and 
2002; or 2003 and 2004) is the gait cycle. Agait cycle involves 
two sets of acceleration and deceleration phases, one for each 
leg. The cycle starts with the acceleration phase of the sec 
ondary leg and is followed by its deceleration phase. After 
that, the two phases of the primary leg come one by one. If the 
gait cycle is divided into four parts, the last part represents the 
deceleration phase of the primary leg. In an embodiment, this 
part can be used for finding the heading direction vector. A 
window in the middle of this phase can be used to find the 
average of the values of three axes separately from linear 
acceleration data within the window. These three average 
values, one from each axis, represent the three components of 
the heading direction vector on the device’s coordinate sys 
tem. Because it is a deceleration phase, the calculated vector 
points exactly opposite to the direction of the walk. This error 
is corrected by simply reversing the direction of the vector. 
[0180] The calculated heading direction vector shows the 
movement of the leg in three-dimensional space, so this vec 
tor is projected onto a plane on which the user is moving to 
find the actual direction of the movement. For example, the 
vector can be projected onto a horizontal plane to find the 
actual direction of the walk in the user’s two-dimensional 
space of movement. This horizontal plane should be globally 
constant and must not depend on the coordinate system of the 
phone. The plane perpendicular to the direction of gravity can 
be used for this purpose. The gravity vector always points to 
the ground no matter what the orientation of the device is. 
Therefore, it can serve as a global constant. This plane that is 
perpendicular to the gravity vector can be called the “walk 
plane”. Vector operations can be applied to find the projection 
of the heading vector perpendicular to the gravity vector. The 
projected heading vector lies on the walk plane. 
[0181] To present the heading direction in angles like a 
compass, the angle that the projected heading vector makes 
with the magnetic north of the Earth can be determined. The 
magnetic field vector can be projected on the walk plane, and 
the directed angle between can be determined from the mag 
netic field vector to the heading vector on the walk plane to get 
the direction of the walk as the deviation in angle from the 
magnetic north. 
[0182] During bipedal movement, a pedestrian may take a 
step to the left or right of the actual heading direction. The 
step by step estimated angle, therefore, may not give the true 
direction of heading. Moreover, the generated heading angle 
may be noisy because of occasional random forces applied to 
the device during the walk. To deal with this issue, in certain 
embodiments, the post-processing module (1870) takes the 
average of two consecutive estimates of the estimated head 
ing angle and applies a median filter. The output of the post 
processing module can be the final heading direction esti 
mate. 
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[0183) One of the indispensable properties of a generic 
heading direction estimator should be the robustness for any 
change in the device’s orientation. It is a challenging aspectin 
the case of pedestrian heading direction estimation, as the 
device continuously changes its orientation during the walk. 
The direction and amount of the orientation change is unpre 
dictable, because no restriction is placed on the carrying style 
of the phone. Systems and methods of the subject invention, 
though, are inherently free from the effect of the orientation. 
The direction of the forces applied on the device during the 
walk and in the global coordinate can be determined, and this 
direction can remain unchanged even after the device changes 
its orientation. 

[0184] The heading direction estimator can sometimes give 
high error values (which is illustrated with reference to 
Example 9), though only a small percentage of the time. 
These high error values can be due to the initial empty buffers, 
which are used for filtering various data. The buffers are used 
to store a window of values for the moving average calculator, 
for the low pass filters used to process the raw sensor data, 
and/or for the median filter used to calculate the final heading 
angles. In the beginning of the execution of the application, 
these buffers may be filled with zeros and therefore any new 
value is underestimated until the buffer is sufficiently filled 
with valid values. This can be referred to as a “cold start 
issue”. The estimates during this period may not match with 
the reality and thus can lead to a high error. This situation can 
also arise when the direction of walk changes abruptly with a 
high angle. This issue can be addressed by adaptively resizing 
the buffers and calibrating the optimal sizes for them. 
[0185] The heading direction estimator can show the head 
ing direction of a user, and this can be in the coordinate system 
of a device (e.g., a cellular phone, such as a smart phone) of 
the system. Because the orientation of the device’s coordinate 
system is not known, a global landmark can be used to rep 
resent the heading direction relative to the direction of that 
landmark. In an embodiment, the magnetic north of the earth 
can serve as such a global landmark for direction. That is, a 
digital compass can be used to obtain a direction that can be 
used as or to determine the global reference direction. The 
direction of the magnetic field obtained from a magnetometer 
(e.g., a built-in magnetometer of a smartphone) can be used 
to represent the walking direction of the user as the angle of 
deviation from this reference direction. This can sometimes 
lead to a source of error in an indoor environment. 

[0186] In an indoor environment, the direction of a mag 
netic compass can vary spatially due to the presence offer 
rous structural material or contents, electrical power systems, 
and/or electronic appliances that can affect the natural geo 
magnetic field. This can introduce errorin an estimated head 
ing direction estimated, although the heading vector com 
puted by the algorithm may be correct. Thus, in many 
embodiments, an alternative global reference direction can be 
used, such as a WiFi RSS map, a magnetic map, and/or 
directions of WiFi APs. 

[0187] In certain embodiments, the heading direction esti 
mator can predict the direction of the next step based on 
previous stable headings and clues from various other sensors 
to find the orientation change of the user. This can be thought 
ofas using a dead-reckoning technique for short intervals and 
at the points when a user takes a turn to estimate the heading 
direction of a walk (“micro-dead-reckoning”). In this tech 
nique, a change in walking direction must be distinguished 
from orientation change of the device only. In a further 
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embodiment, the length of the buffer(s) can be adaptively 
maintained, such that at the beginning of a walk or whenever 
any turn invalidates the contents of the buffer, the length of the 
buffer can be shortened, and then increased up to a limit when 
a series of stable headings are found. 
[0188] In a further embodiment, the heading direction of a 
user can be estimated three-dimensional space. The heading 
vector calculated by the heading direction estimator can 
already point the direction in three-dimensional space and 
can inherently produce the direction of movement in a three 
dimensional environment. This is helpful to identify the head 
ing direction when the user is climbing stairs and in many 
other scenarios where the movement is not restricted to the 
horizontal plane. 
[0189] In another embodiment, the heading direction can 
be estimated for a user using equipment for locomotion, 
including but not limited to a wheelchair or a skateboard. The 
heading direction estimator can work as long as a repetitive 
pattern of heading forces occur and can be sensed during the 
process of movement. Thus, implementations are available 
for cases in which a user (and device) is traveling on an 
equipment for locomotion. 
[0190] In certain embodiments, the heading direction can 
be estimated by using sensing data from and/or communicat 
ing between multiple sensing devices located at various parts 
of the body of a user. For example, the combined data from a 
device (e.g., a smartphone) in a pocket and a device (e.g., a 
tablet) in a hand can provide more information about the 
user’s movement and can sometimes produce better estima 
tion of the heading direction. 
[0191) Systems and methods of the subject invention can 
estimate the heading direction of a user by analyzing the 
various forces employed during the walking process. The 
moving direction of the user can be identified on a per step 
basis. The systems and methods can be inherently free from 
the constraints of the orientation of a device used to obtain 
sensor data. An average error in heading direction estimation 
of, e.g., six degrees or less can be obtained. 
[0192] The systems and methods of heading direction esti 
mation can be used as in connection with any navigation 
system and/or localization system, including but not limited 
to the systems and methods for indoor localization described 
herein. For example, a heading direction estimation as 
described herein can be used during the walking trace esti 
mation (using, e.g., dead-reckoning) of the indoor localiza 
tion systems and methods described herein. Heading direc 
tion can be incorporated into the indoor localization process 
for a more robust experience in tracing a user’s path (and 
facilitating orientation determination for recognizing calcu 
lations in some implementations). 
[0193] The methods and processes (and algorithms) 
described herein can be embodied as code and/or data. The 
software code and data described herein can be stored on one 
or more computer-readable media, which may include any 
device or medium that can store code and/or data for use by a 
computer system. When a computer system reads and 
executes the code and/or data stored on a computer-readable 
medium, the computer system performs the methods and 
processes embodied as data structures and code stored within 
the computer-readable storage medium. 
[0194] It should be appreciated by those skilled in the art 
that computer-readable media include removable and non 
removable structures/devices that can be used for storage of 
information, such as computer-readable instructions, data 
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structures, program modules, and other data used by a com 
puting system/environment. A computer-readable medium 
includes, but is not limited to, volatile memory such as ran 
dom access memories (RAM, DRAM, SRAM); and non 
volatile memory such as flash memory, various read-only 
memories (ROM, PROM, EPROM, EEPROM), magnetic 
and ferromagnetic/ferroelectric memories (MRAM, 
FeFAM), and magnetic and optical storage devices (hard 
drives, magnetic tape, CDs, DVDs); network devices; or other 
media now known or later developed that is capable of storing 
computer-readable information/data. Computer-readable 
media should not be construed or interpreted to include any 
propagating signals. 
[0195] A greater understanding of the present invention and 
of its many advantages may be had from the following 
examples, given by way of illustration. The following 
examples are illustrative of some of the methods, applica 
tions, embodiments and variants of the present invention. 
They are, of course, not to be considered as limiting the 
invention. Numerous changes and modifications can be made 
with respect to the invention. 

Example 1 
[0196) Experiments were performed in the computer engi 
neering building at Duke University in Durham, N.C., United 
States of America. Volunteers were asked to carry NexusS 
phones in their pockets and walk naturally in one wing of the 
building. A system according to an embodiment of the subject 
invention was implemented on the mobile phone of each user. 
The system recorded the accelerometerand compass readings 
of each user and extracted from these reading the ‘displace 
ment, direction, time-tuples. To record ground truth, differ 
ent doors and windows in the building were marked with a 
distinct number, and when a user passed by that number, the 
user entered it into the phone. Since the mapping between the 
number and the door/window was known, ground truth could 
be extracted. Ten traces were gathered, each starting from the 
entrance of the building. Trace-based analysis was performed 
to understand how the dead-reckoned path diverged from the 
true path, with varying number of landmarks. 
[0197] FIGS. 21 and 22 show plots of localization error 
versus time using different levels of information. Referring to 
FIGS. 21 and 22, error from dead-reckoning reduces when a 
gyroscope is used and reduces further when landmarks are 
used. In FIG. 21, the line that reaches an error of over 100 m 
is for compass only, the lighter solid line that reaches an error 
of about 20 m is for compass and gyroscope, the darker line 
with the saw-tooth pattern is for compass and landmarks, and 
the dotted line is for compass, gyroscope, and landmarks. The 
accumulated error overtime when using pure dead-reckoning 
with zero landmarks (compass only) accumulates dramati 
cally fast and is completely unusable. Here, landmarks were 
simulated by periodically resetting the user’s location to the 
correct location, and the compass+landmark curve shows the 
results. While the performance improves, the mean localiza 
tion error is still 11.7 m. 
[0198] It was observed that the magnetic field in the indoor 
environment was heavily distorted by metallic and electrical 
equipment in the building. Although these magnetic fluctua 
tions can be beneficial for identifying LMs, they derail dead 
reckoning by injecting heavy error in the compass. Gyro 
scopes measure the angular velocity in three dimensions and 
are not affected by the magnetic field. Gyroscope readings 
were processed to compute the angular changes during walk 
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ing, i.e., how the user turned. However, gyroscope readings 
are relative and were combined with the compass to estimate 
the user’s absolute walking direction. Using the gyroscope 
and the compass in tandem reduced the dead-reckoning error 
appreciably, as seen in FIG. 21. When re-calibrated by peri 
odic landmarks, the average error dropped further to 1.2 m. In 
addition, once a landmark is encountered, the user’s path can 
be retraced and corrected between the last two landmarks. 
Although this does not help in real-time tracking of the user, 
it helps in offline analysis, and for improving the location 
estimate of OLMs. 

Example 2 

[0199] An indoor space is likely to have many areas, of 
varying sizes, within which all locations overhear a distinct 
set of WiFi APs. FIG. 23 shows a plot of the cumulative 
distribution function (CDF) of the sizes of these areas in the 
engineering building at Duke University. While most of the 
areas are quite large, explaining why simple WiFi-based 
localization is not very accurate, there are a few areas (at the 
left side of the X axis) that are very small. Systems and 
methods of the subject invention can exploit these small areas 
as an LM. If one of these small areas overhears a set of WiFi 
APs, denoted W, then a mobile device overhearing the same 
set can be assumed to be within that area. Since the area is 
small, the localization error of the phone will be small too, 
enabling a location recalibration. Measurements showed that 
in two floors of the engineering building, eight and five such 
WiFi landmarks exist, respectively, each of an area less than 
4 mt. Thus, WiFiAPs can offer LMs to enhance dead-reck 
On1ng. 

Example 3 

[0200) K-means clustering was executed on accelerometer 
and compass measurements obtained in Example 1. For each 
cluster, members were mapped to their corresponding physi 
cal locations (using ground truth). For most clusters, the 
member locations were widely scattered in space, and hence, 
were unusable as a LM. However, members of a few clusters 
proved to be tightly collocated in space as well. A unique/ 
stable magnetic fluctuation was discovered near the network 
ing lab within the engineering building. Another location with 
a distinct accelerometer signature—a pair of symmetric 
bumps in opposite directions—was also discovered. FIG. 24 
shows a plot of acceleration versus time for this signature. 
Referring to FIG. 24, this accelerometer signature occurred 
inside an elevator, caused by the elevator starting and stop 
ping. Though, the system need not understand the semantic 
meaning of these signatures. 
[0201] The direction of the bumps (upward or downward) 
indicated whether the user went upstairs or downstairs. These 
spatially collocated patterns were natural LMs, and when all 
sensing dimensions were assimilated, the number of land 
marks proved to be six and eight for the two floors, respec 
tively. When accelerometer and compass data were com 
bined, providing a higher dimensional signature, even more 
OLMs were discovered due to turns in the building. The 
OLMs and SLMs together offer the needed density to support 
indoor dead-reckoning. 
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Example 4 

[0202] FIG. 25A shows a schematic diagram of users walk 
ing and periodically encountering LMs. In this example, it is 
assumes that the system has combined the user’s sensor data, 
clustered on them, and discovered three sensor signatures (in 
distinct WiFi areas), that can be used as LMs. The locations of 
these landmarks need to be computed, but there is no ground 
truth to learn that. One way to estimate the location of a 
landmark is to use dead-reckoning, but that may not be accu 
rate since dead-reckoning itself can be erroneous. The land 
mark location can be computed by combining all the (dead 
reckoned) estimates of a given landmark. The dead-reckoning 
errors have been observed to be random and independent, due 
to the noise in hardware sensors and human step sizes. By 
combining these errors from adequate measurements, the 
estimated mean can be expected to converge to the actual 
landmark location. FIG. 25B shows a schematic diagram 
illustrating this process through a simple centroid calculation. 
FIG. 26 shows a diagram of walking paths giving one 
example of how data for FIG.25B might be obtained. FIG. 27 
shows a plot of y-coordinate of estimated LM location versus 
x-coordinate of estimated LM location for multiple dead 
reckoned estimates. Referring to FIG. 27, each line joins the 
estimated LM location to the actual location. 

Example 5 

[0203] A system according to the subject invention was 
implemented on Google NexusS phones using JAVA as the 
programming platform. The phone sampled the four sensors 
(magnetometer, compass, and accelerometer at 24 Hz; gyro 
scope at highest permissible rate) and WiFi (at 1 Hz). Various 
features derived from these measurements were sent to a 
server connected to the phones. The server side code was 
written using C# and MATLAB, and it implemented the 
dead-reckoning, clustering, and landmark signature-match 
ing algorithms. Whenever a new landmark was detected from 
clustering, the server updated the OLM list. 
[0204] Markers were placed on the ground at precisely 
known locations, such as the center of a classroom door, the 
first step in a staircase, the entry-point to an elevator, or in 
front of a window. Each of these markers had a number on it, 
and as a user walked through a marker, the user spoke out the 
number on the marker, and the phone recorded it. By super 
imposing the map of the building on Google"M Earth, and 
identifying the corresponding locations of the markers, their 
GPS locations were extracted. This provided ground truth at 
these markers. Between two markers (separated by 5 m on 
average), step-count was used to interpolate. The system did 
not rely on any of the ground truth markers to compute loca 
tion; these were used only for error analysis. 
[0205] Traces were obtained at two malls in Egypt. Table 1 
shows the confusion matrix for the detection of all SLMs 

using these traces from the malls. The matrix shows that some 
SLMs were easier to detect than others due to their unique 
patterns. This led to zero false positive and negative rates for 
the elevators and walking cases. Even with the more difficult 
SLMs, the high accuracy was still achieved, with an overall 
0.2% false positive rate and 1.1% false negative rate. 
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TABLE 1 

Confusion matrix for classifying different seed landmarks 

Sta 
Ele- tion- Esca- Walk 
vator ary lator ing Stairs FP FN Traces 

Ele- 24 O O O O 0% 0% 24 
Vätor 
Sta- O 31 1 O O 0% 3.1% 32 
tionary 
Esca- O O 22 O O 0.6% 0% 22 
lator 
Walk- O O O 39 O 0% 0% 39 
ing 
Stairs O O O 1 52 0% 1.8% 53 

Overall 0.2% 1.1% 170 

Example 6 
[0206] A system according to the subject invention was 
implemented on Google NexusS phones using JAVA as the 
programming platform. The phone sampled the four sensors 
(magnetometer, compass, and accelerometer at 24 Hz; gyro 
scope at highest permissible rate) and WiFi (at 1 Hz). Various 
features derived from these measurements were sent to a 
server connected to the phones. The server side code was 
written using C# and MATLAB, and it implemented the 
dead-reckoning, clustering, and landmark signature-match 
ing algorithms. Whenever a new landmark was detected from 
clustering, the server updated the OLM list. Prototypes of the 
tracking system show indoor localization with a median loca 
tion error of 1.69 meters (m) or less. 
[0207] Real-life experiments were performed with three 
different users in three different buildings: (1) the computer 
science building at Duke University; (2) the engineering 
building at Duke University; and (3) North Gate shopping 
mall in Durham, N.C. The area covered in each building was 
(approximately) 1750 m3, 3000 m3, and 4000 m3, respec 
tively. Each user walked around arbitrarily in the building for 
1.5 hours, covering multiple floors; they carried 2 phones, one 
in the pocket and another in the hand with the screen facing 
up. Separate arrangements were made to collect ground truth 
(recall that GPS is not available inside any of these buildings). 
Markers were placed on the ground at precisely known loca 
tions, such as the center of a classroom door, the first step in 
a staircase, the entry-point to an elevator, or in front of a 
window. Each of these markers had a number on it, and as a 
user walked through a marker, the user spoke out the number 
on the marker, and the phone recorded it. By superimposing 
the map of the building on Google"M Earth, and identifying 
the corresponding locations of the markers, their GPS loca 
tions were extracted. This provided ground truth at these 
markers. Between two markers (separated by 5 m on aver 
age), step-count was used to interpolate. The system did not 
rely on any of the ground truth markers to compute location; 
these were used only for error analysis. At any given time, the 
difference between ground truth and the system-estimated 
location was the instantaneous localization error. 

[0208] FIG. 28A shows a plot of the number of LMs 
detected, and FIG. 28B shows a schematic diagram of LMs. 
Referring to FIG. 28A, the breakdown of the LMs in the 
engineering building is nine magnetic, eight turns, and 15 
WiFi OLMs. For the computer science building, the break 
down is: nine magnetic, ten turns, and ten WiFi OLMs. Refer 
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ring to FIG. 28B, these landmarks are quite homogeneously 
scattered inside the buildings. With these numbers of well 
scattered landmarks, a user’s dead reckoning error is not 
likely to grow excessively, in turn helping landmark localiza 
tion. 
[0209 FIG. 29.A shows a plot of OLM localization accu 
racy versus time; FIG. 29B shows a plot of number of OLMs 
versus time for different sensor types; and FIG. 29C shows a 
plot of accuracy versus sensor type. Referring to FIG. 29A, 
the number of landmarks increases over time, as more users 
explore the space. FIG. 29B also supports this finding. The 
accuracy of these landmarks also increase, since different 
paths bring different independent estimates. The data sets in 
this example were somewhat limited in diversity of paths 
since volunteers could not walk around into any rooms or 
auditoriums in these buildings—many were research offices, 
faculty offices, or classrooms. The diversity of different inde 
pendent paths can be expected to augment the accuracy. 

Example 7 

[0210] The experiment described in Example 6 was 
repeated on multiple days. If landmark signatures fluctuate 
quickly over time, then OLMs will be unstable. Thus, users 
may never encounter the established OLMs because their 
signatures are changing faster than they can be learned. Fur 
thermore, it is entirely possible that users at a different loca 
tion sense a signature that matches a far-away landmark. In 
such a case, the user’s location will be repositioned to the 
(highly erroneous) landmark. To verify if such variations 
occurred in the test buildings, sensor readings were collected 
on multiple days. Sound consistency was found in the signa 
tures. This is not surprising because all the signatures are 
designed to be stable, particularly WiFi and accelerometer/ 
gyroscope-based turns. While the magnetic signatures can 
change, no appreciable change was observed. Nonetheless, 
systems of the subject invention can embrace a conservative 
approach by using a low similarity threshold while declaring 
a LM. In other words, the signature of the landmark should be 
very dissimilar with other signatures to qualify as a LM. This 
helps ensure that when a test user matches sensed readings 
with existing OLMs, the false positive (FP) rate is low. 
[0211] Referring to FIG. 29C, FPs are quantified and 
shown to be less than 1%. As a tradeoff for choosing very 
distinct signatures, it is possible that a test user may not match 
it well. FIG. 29C shows that the matching accuracy is reason 
ably high, though not perfect. Given that the number of land 
marks is high, missing a few will affect performance much 
less than matching to an incorrect landmark. In other words, 
the system can be in favor of trading off matching accuracy to 
maintain low FPs. 
[0212] Ofcourse, changes in the ambience, (e.g., relocation 
of major electrical equipment to a different room, or deacti 
vated WiFi APs) can affect existing landmarks, and the sys 
tem will not be able to match them. However, the system will 
learn these changes over time, both the disappearance of the 
LM from its original location, as well as the emergence of a 
LM at a different location. The system can remain resilient to 
LM churn, especially in the case that not all changes occur at 
the same time. 
[0213] In offline localization, whenevera user encounters a 
LM, the system learns the user’s errors, and therefore can 
track back and partly correct the user’s past trail. Online, 
real-time localization does not offer this benefit. FIG. 30A 
shows a plot of the CDF of localization error using SLMs for 
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offline and online localization. The offline localization is the 
darker line. FIG. 30B shows a plot of the CDF of localization 
error using both SLMs and OLMs for offline estimation and 
for online localization in the different building. The thick, 
dark line at the left of the plot is for offline estimation. 
[0214) Referring to FIGS. 30A and 30B, the advantage of 
offline localization can be appreciable. This implies that for 
applications which do not need online tracking, localization 
error can be within 1.15 m on average, even with a few LMs. 
As the system identifies several OLMs, error correction 
opportunities can increase. FIG. 30B demonstrates that the 
mean instantaneous localization error is within 1.69 m. The 
performance can improve over time as more OLMs are 
detected. FIG. 31A shows a plot of localization error versus 
time, and FIG. 31B shows a plot of CDF of localization error 
at different times. Referring to FIGS. 31A and 31B, the local 
ization error is higher early on but decreases rapidly. Refer 
ring to FIG. 31A, as a user moves away from a landmark, the 
location error grows and eventually gets reset at the next 
landmark. 
[0215] Initially, the system may have only has a few LMs, 
and the error between two LMs can be high. As more land 
marks are identified and added to the system, the error growth 
can be curbed frequently. Referring again to FIG. 32B, the 
error is aggregated over time across all the users walking on 
multiple routes. The benefits of additional OLMs are evident. 
[0216) FIG.32 shows a plot of the CDF of localization error 
using different numbers of OLMs. Even with ten out of the 28 
landmarks, average instantaneous location erroris within 1.9 
m. A few landmarks can be expected to be available in most 
buildings. In certain embodiments, it is possible for the sys 
tem to even turn on the microphone to expand to ambient 
acoustic signatures. 

Example 8 

[0217] Heading direction estimation in certain systems and 
methods of the subject invention is based on the principles of 
force and motion in Newtonian physics. According to the 
principles, all motions of an object are the effect of the forces 
applied on it. Every change in position or velocity, from the 
drop of a pen to the complex motion of a car, is actually 
caused by the forces. The relationship between the force, 
velocity, and acceleration is better explained with a simple 
two-dimensional scenario described in the FIG. 33. Here the 
object was initially stationary at position A, and a constant 
force (F1) is applied for n seconds on it and after that, at 
position C, the force reverses its direction (F2) and again acts 
for n seconds. Even if the force cannot be observed directly, it 
can be sensed through the changes in position, velocity, and 
acceleration of the object. The changes in position, velocity, 
and acceleration caused by this force are depicted in FIG. 33. 
[0218] The movement of limbs during walking also follows 
the basic relationship of the force, velocity, and acceleration 
discussed with respect to FIG. 33. Each part of the body 
experiences acceleration due to the force that moves them 
forward and so does a device placed at that part of the body. 
The acceleration, recorded by the device at various point of 
time, can be exploited to get the direction of the force applied 
to it at that time. A close analysis of human locomotion 
reveals that the body does not move with same speed through 
out the walk. If the walk is divided into repetitive patterns, 
called gait cycle, it can be observed that at the beginning and 
end of the cycle the velocity is low. Also, the velocity of the 
walk slows down whenever either of the feet touches the 

Oct. 1, 2015 

ground. This means when the leg swings in the air, it experi 
ences two opposite forces. During the first half, a force is 
applied to increase the velocity of the limb in the direction of 
the walk and in the next halfit reverses its direction to slow 
down the velocity before touching the ground. The first half of 
this process can be thought of as an “acceleration phase” and 
the second half a “deceleration phase”. 
[0219) Multiple subjects carrying smartphones at various 
places were observed. The phones were carried at locations 
including inside various kinds of pants pocket, on palmtop, in 
swinging hand, in cases attached to the waist, and inside a 
backpack. The movement of the subjects was recorded and 
the sensor data was collected from the smartphones, which 
were time-synchronized with the camera. Initially, the room 
was dark and the cameras were running. The smartphones 
were also sensing the light of the environment through their 
ambient light sensors. Then, the light was turned on to give a 
sudden increase in light level sensed by the smartphones as 
well as the cameras. When sensor data from the smartphones 
and video from the camera was analyzed, this hint of change 
in light level was used to achieve millisecond-level synchro 
nization between these two sources of data. 
[0220) Frame-by-frame movements during the walk of 
each person were analyzed, as were corresponding changes in 
the sensor data. FIGS. 34A, 34B, and 34C show the screen 
shots of the experiment and the corresponding values of linear 
acceleration in the three small windows on the right. The user 
held the smartphone on the right palm top during the walk. It 
also tracks the phone in the video to show the vertical move 
ment of the phone. The window on the top left focuses on the 
hand and the window below it shows the position of the feet. 
The screen shots of the same experiment with the linear 
acceleration data from a smartphone carried in the right 
pocket of the trousers are given in FIGS. 35A, 35B, and 35C. 
In the screen shots the changes in the sign of the acceleration 
vales at different phases of walk can be observed. 
[0221] The sudden changes in all three axes of the acceler 
ometer can be seen when the leg touches the ground. The 
results of this experiment lead to the following observations: 
a) most of the time the body moves in the direction of the leg 
when it swings in the air (this serves as the basic segment of 
heading direction of a person for an embodiment of the sub 
ject invention); b) the swinging leg experiences a forward 
force during the first half of the movement and an opposite 
force during the second half, and the forward force actually 
shows the heading direction; and c) the movement of the legs 
and other parts of the body are different in nature. Therefore, 
for accurate step detection, accelerometer data obtained from 
devices placed at various parts of the body should be pro 
cessed to take the location of the sensor into consideration. 

Example 9 
[0222] A heading direction estimation system according to 
an embodiment of the subject invention was tested. Various 
users used the system in a predefined path in a corridor and 
recorded the data including the estimated heading direction. 
During the walk, each user traveled approximately 25 steps at 
an angle with magnetic north of 160 degrees before taking a 
right turn and then again around 30 steps forward at 244 
degrees. In this experiment, the 84-degree turn was included 
in the path to measure the response of the system when the 
heading direction changes by a large angle. The 160 degree 
and the 244 degree orientation of the corridor were consid 
ered as the ground truth. However, this kind of constant direc 
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tion value cannot serve as a ground truth for a typical pedes 
trian walk. In an unrestricted natural walk, the user cannot 
exactly follow a straight line. Many times, a user will lean 
towards a side and constantly correct the direction to reach the 
destination. Therefore, an algorithm that estimates the head 
ing direction at the granularity of a single step cannot use the 
direction of the line joining the start and end position as the 
true direction of walk. 

[0223] Two scenarios were tested, one with the device held 
in the user’s hand (on palm top) and one with the device kept 
inside a pocket of the user’s trousers. In the first scenario, 
each user held the phone in the hand such that the screen could 
be watched while walking. This captures one of the common 
holding positions where a user can use the phone by clicking 
or typing on the screen or watching something on it. Although 
there was no restriction on the initial orientation of the phone, 
the user did not change its orientation during the walk. FIG. 
39A shows a scatter plot of estimated angles as a function of 
time for the first scenario. Referring to FIG. 39A, several 
traces of this experiment were collected. The dots show the 
heading angle of the user at each step, and the line shows the 
actual angle at various times. The calculated heading angle 
follows the true direction of the walk and changes accord 
ingly. After the turn, the system takes four steps to adopt the 
new heading angle. The filters used in the system to produce 
a stable result from the noisy sensors introduce this delay. 
[0224] In the second scenario, each user carried the device 
in a trouser pocket. No restriction was placed on the choice of 
the pocket and orientation of the phone inside the pocket. The 
users did not deliberately change the position of the phone 
during the experiment. FIG. 39B shows a scatter plot of 
estimated angles as a function of time for the second scenario. 
Referring to FIG. 39B, a similar scatter plot to that in FIG. 
39A was obtained. The error of the estimated heading angles 
was calculated by taking the difference from the orientation 
of the corridor. FIG. 40 shows a plot of the CDF of the errors 
in estimated heading direction. Referring to FIG. 40, the 
estimated angle remains within 10 degrees of the ground truth 
for around 70% of the samples. There is a high error region on 
the plot, from –20 degrees to —80 degrees, for around 5% of 
the samples. These high errors come from the delay in adopt 
ing the 84-degree turn. The mean value of the error is 6 
degrees. Table 2 shows various statistics of the error as mea 
sured during the experiment. 

TABLE 2 

Statistics of the error in estimated heading direction. 

Statistics Value 

Mean 6.2058 
Median 2.7402 

Standard Deviation 12.4174 
Minimum error 0.0256 
Maximum error 80.3090 

Example 10 

[0225) Experiments were designed where the direction of 
the walk remained unchanged, but the user changed the ori 
entation of the device to large angles. In this test, each user 
carried a smartphone in hand. Each user walked 60 steps in a 
straight corridor, and after every 15 steps the orientation of the 
phone was changed. Under such a scenario, ideally the output 
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of the heading direction estimation system should remain 
constant throughout the walk and should always point to the 
actual direction of the walk, unaffected by the device’s ori 
entation change. 
[0226] In the first experiment, the change in orientation was 
approximately 90 degrees after every 15 steps. FIG. 38A 
shows a plot of the angle versus time for this experiment. The 
direction of the walk as calculated by the system is the dark 
solid line. The x-axis represents the time of the walk, and the 
y-axis shows the angle in degrees. All the angles were calcu 
lated as the deviation from magnetic north in a horizontal 
plane. The dashed line shows the compass angle, which is the 
direction the y-axis of the phone points to. The compass angle 
gives a hint about the change of the orientation of the phone. 
The thin solid line (which is very close to the dark solid line) 
shows the actual orientation angle of the corridor, 244 
degrees. 

[0227| Referring to FIG. 38A, the calculated orientation is 
not affected by the orientation change. The change in the 
phone’s orientation can be seen orientation from the compass 
angle plot. 

[0228] To test in more common orientation change sce 
narios, in the second experiment, the user switched the phone 
orientation between texting and calling positions. FIG. 38B 
shows a plot of angle versus time for this experiment. The user 
switched the orientation of the smartphone from texting posi 
tion to calling position after every 15 steps. The direction of 
the walk as calculated by the system is the dark solid line. The 
x-axis represents the time of the walk, and the y-axis shows 
the angle in degrees. All the angles were calculated as the 
deviation from magnetic north in a horizontal plane. The 
dashed line shows the compass angle, which is the direction 
the y-axis of the phone points to. The compass angle gives a 
hint about the change of the orientation of the phone. The thin 
solid line (which is very close to the dark solid line) shows the 
actual orientation angle of the corridor, 244 degrees. 
[0229) Referring to FIG. 38B, the results of the second 
experiment are similar to those of the first experiment, shown 
in FIG. 38A. That is, the system remained unaffected by the 
orientation change. 
[0230] The same experiment was repeated with various 
users, and the data was collected. The initial orientation of the 
smartphone and the change in orientation was up to the user 
and therefore random. FIG. 39 shows a scatter plot of angle 
versus time for all of these traces. The circles represent the 
calculated angles, and the solid line represents the orientation 
of the corridor (244 degrees). Referring to FIG. 39, the cal 
culated angle follows the general direction of walk. 
[0231] The error in heading direction estimation was cal 
culated by taking 244 degrees as the ground truth, although 
this does not follow the true heading at each step. FIG. 40 
shows a CDF plot of the error in the estimated heading direc 
tion. Referring to FIG. 40, the error was limited to 10 degrees 
for more than 80% of the samples. Table 3 shows various 
statistics, generated on these estimated error values, that sum 
marize the performance of the system in withstanding orien 
tation change to the phone during the walk, based on this 
Example. The mean of the error remains close to the statistics 
presented in Table 2. 
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TABLE 3 

Statistics of the error in estimated heading direction. 

Statistics Value 

Mean 5.4701 
Median 4,5573 

Standard Deviation 4.2746 
Minimum error 0.0404 
Maximum error 22.5499 

Example 11 

[0232] The performance of the motion mode detection 
algorithm of a system of the subject invention was tested by 
recording the calculated motion mode at each step of the user, 
for multiple users. The users walked in a corridor having one 
left turn, one about turn, and one right turn. Approximately 80 
steps were required for each user to walk on this specific path 
during the experiment. The users naturally carried the smart 
phone in one specific pattern for each experiment. The swing 
ing hand (Case 1), pocket (Case '), and palm-top (Case 3) 
scenarios were focused on for this evaluation. Table 4 shows 
the confusion matrix with the percentage of the calculated 
motion modes for each of the experiments. The rows corre 
spond to the experiments with one motion mode and the 
columns show the percentage of times the algorithm pre 
dicted the corresponding motion mode. Each experiment was 
repeated multiple times for each user, and the results showed 
that more than 82% of the time the algorithm correctly iden 
tified a motion mode. In fact, Case 1 was correctly identified 
82.88% of the time, Case 2 was correctly identified 84.04% of 
the time, and Case 3 was correctly identified 97.22% of the 
time. Systems and methods of the subject invention can cor 
rectly identify each of these cases at least this percentage of 
the time (i.e., Case 1 at least 82.88% of the time, Case 2 at 
least 84.04% of the time, and Case 3 at least 97.22% of the 
time). 

TABLE 4 

A confusion matrix showing the performance of the 
motion mode detection algorithm (values indicate 
the percentage of the calculated motion pattern). 

Case1 Case2 Case3 Case4 Case:S 
TrueMode (SwingHand) (Pocket) (PalmTop) (Jerk) (Other) 

Case 1 82.88 0.75 O 15.85 0.52 
Case 2 13.21 84.04 O O 2.75 
Case 3 O O 97.22 O 2.78 

Example 12 

[0233] FIG. 41 illustrates a computing system 4100 that 
may be used in some embodiments. For example, system 
4100 can be used in implementing a mobile device such as a 
smartphone, wearable computer (e.g., watch-based, glasses 
based or other wearable form), tablet or the like. In some 
embodiments, system 4100 is an integrated computing 
device, such as an integrated PDA and wireless phone. Sys 
tem 4100 can include a power supply (not shown), which may 
be implemented as one or more batteries and/or an energy 
harvester (ambient-radiation, photovoltaic, piezoelectric, 
thermoelectric, electrostatic, and the like). 
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[0234] Referring to FIG. 41, computing system 4100 
includes a processing system 4101 that may comprise a 
microprocessor and other circuitry that retrieves and executes 
software 4105 from storage system 4103. Processing system 
4101 may be implemented within a single processing device 
but may also be distributed across multiple processing 
devices or sub-systems that cooperate in executing program 
instructions. Examples of processing system 4101 include 
general purpose central processing units, application specific 
processors, and logic devices, as well as any other type of 
processing device, combinations, or variations thereof. 
[0235] Processing system 4101 may be, or is included in, a 
system-on-chip (SoC) along with one or more other compo 
ments such as sensors (e.g., magnetometer, an ambient light 
sensor, a proximity sensor, an accelerometer, a gyroscope, a 
Global Positioning System sensor, temperature sensor, shock 
sensor) and network connectivity components (e.g., includ 
ing Radio/network interface 4104). 
[0236] Storage system 4103 may comprise any computer 
readable storage media readable by processing system 4101 
and capable of storing software 4105. Storage system 4103 
may include volatile and nonvolatile, removable and non 
removable media implemented in any method or technology 
for storage of information, such as computer readable instruc 
tions, data structures, program modules, or other data. 
Examples of storage media (and computer-readable storage 
media) include volatile memory such as random access 
memories (RAM, DRAM, SRAM); and non-volatile memory 
such as flash memory, various read-only-memories (ROM, 
PROM, EPROM, EEPROM), magnetic and ferromagnetic/ 
ferroelectric memories (MRAM, FeFAM), and magnetic and 
optical storage devices (hard drives, magnetic disk storage, 
magnetic tape, CDs, DVDs, or any other suitable storage 
media. In no case is the storage media a propagated signal. In 
addition to storage media, in some implementations storage 
system 4103 may also include communication media over 
which software 4105 may be communicated internally or 
externally. Storage system 4103 may be implemented as a 
single storage device but may also be implemented across 
multiple storage devices or sub-systems co-located or distrib 
uted relative to each other. Storage system 4103 may com 
prise additional elements, such as a controller, capable of 
communicating with processing system 4101. 
[0237) Software 4105 may be implemented in program 
instructions and among other functions may, when executed 
by computing system 4100 in general or processing system 
4101 in particular, direct computing system 4100 or process 
ing system 4101 to operate as described herein for indoor 
localization and/or heading direction estimation 1000 (see 
e.g., FIGS. 2-5 and 18). Software 4105 may include addi 
tional processes, programs, or components, such as operating 
system software or other application software. Software 4105 
may also comprise firmware or some other form of machine 
readable processing instructions executable by processing 
system 4101. 
[0238] In general, software 4105 may, when loaded into 
processing system 4101 and executed, transform computing 
system 4100 overall from a general-purpose computing sys 
tem into a special-purpose computing system customized to 
facilitate indoor localization and/or heading direction as 
described herein for each implementation. Indeed, encoding 
software 4105 on storage system 4103 may transform the 
physical structure of storage system 4103. The specific trans 
formation of the physical structure may depend on various 
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of landmarks comprise instructions that when executed by the 
processing system direct the processing system to: 

access the list of landmarks, wherein each landmark com 
prises an identifiable signature and an estimated loca 
tion; 

compare the sensor data to the signatures of the landmarks 
to determine a presence or absence of a matching iden 
tifiable signature corresponding to a landmark of the 
landmark list; 

in response to the presence of the matching identifiable 
signature, estimate a new location of the user using the 
landmark; and 

in response to the absence of the matching identifiable 
signature, perform a distance estimation using a first 
sensor data, perform a direction estimation using a sec 
ond sensor data, and estimate the new location using the 
current location, the distance estimation, and the direc 
tion estimation. 

6. The system of claim 5, wherein the program instructions 
further comprise instructions that when executed by the pro 
cessing system direct the processing system to: 

in response to the absence of a matching signature, deter 
mine a presence of a new landmark using the sensor data 
and at least a previous sensor data; estimate a location of 
the new landmark; and store the new landmark as an 
organic landmark with the list of landmarks on the one or 
more computer-readable storage media. 

7. The system of claim 5, wherein the program instructions 
further comprise instructions that when executed by the pro 
cessing system direct the processing system to: 

in response to the presence of a matching signature, com 
bine the sensor data with the matching signature to 
improve signature and location information. 

8. A method of unsupervised indoor localization, compris 
ing: 

in response to receiving first sensor data, estimating a pro 
jected location of a user in an indoor environment by 
using the first sensor data, a last known location, and a 
time since the user was at the last known location; 

determining a presence of another known location, 
wherein the another known location is an estimated 
indoor location based on a distinct signature detected by 
one or more sensors providing the first sensor data; and 

in response to determining the presence of the another 
known location, adjusting the projected location and 
estimating a second projected location of the user by 
using a second sensor data provided by the one or more 
sensors, the another known location, and the time since 
the user was at the another known location. 

9. A method of unsupervised indoor localization, compris 
ing: 

storing a current location of a user in a storage medium; 
collecting sensor data from one or more sensors moving 

with the user; 
analyzing the sensor data to determine a presence or an 

absence of a known landmark; 
in response to the presence of a known landmark, estimat 

ing a new location of the user using the known landmark; 
in response to the absence of a known landmark, perform 

ing a distance estimation using a first sensor data, per 
forming a direction estimation using a second sensor 
data, and estimating the new location using the current 
location, the distance estimation, and the direction esti 
mation; and 

updating the current location with the new location. 
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10. The method of claim 9, wherein analyzing the sensor 
data to determine the presence or the absence of the known 
landmark comprises: 

receiving a current landmark list comprising a signature 
and an estimated location for each landmark; and 

comparing the sensor data to the signatures of the land 
marks to determine a presence oran absence of a match 
ing signature. 

11. The method of claim 9, wherein the first sensor data 
comprises data from an accelerometer. 

12. The method of claim 9, wherein the second sensor data 
comprises data from a gyroscope and/or a compass. 

13. The method of claim 9, wherein analyzing the sensor 
data to determine the presence or the absence of the known 
landmark comprises: 

accessing a landmark list comprising a signature and an 
estimated location for each landmark, the landmark list 
generated from previous data for the indoor environ 
ment; and 

comparing the sensor data to the signatures of the land 
marks to determine a presence oran absence of a match 
ing signature. 

14. The method of claim 13, further comprising: 
in response to the absence of a matching signature, deter 

mining a presence of a new landmark using the sensor 
data and at least a previous sensor data from the previous 
data for the indoor environment; estimating a location of 
the new landmark; and updating the landmark list to 
include the new landmark. 

15. A method of unsupervised indoor localization, the 
method comprising: 

estimating a location of a user within an indoor environ 
ment, wherein estimating the location of the user com 
prises: 
estimating a movement trace of the user within the 

indoor environment using first sensor data obtained 
from at least one sensor; and 

identifying at least one landmark within the indoor envi 
ronment using second sensor data obtained from the 
at least one sensor. 

16. The method of claim 15, wherein the first sensor data 
comprises at least one selected from the group consisting of: 
accelerometer data; compass data; gyroscope data; magne 
tometer data; barometer data; microphone data; light sensor 
data; temperature sensordata; chemical sensor data; humidity 
sensor data; Bluetooth signal strength data; WiFi signal 
strength data; and cellular signal strength data, and 

wherein the second sensor data comprises at least one 
selected from the group consisting of accelerometer 
data; compass data; gyroscope data; magnetometer data; 
barometer data; microphone data; light sensor data; tem 
perature sensor data; chemical sensor data; humidity 
sensor data; Bluetooth signal strength data; WiFi signal 
strength data; and cellular signal strength data. 

17. The method of claim 15, wherein the first sensor data 
comprises accelerometer data, and 

wherein estimating the movement trace of the user com 
prises: 
estimating a number of steps taken by the user over a first 

period of time by analyzing the accelerometer data; 
estimating a distance traveled by the user during the first 

period of time by multiplying the number of steps 
with an estimated step size; 
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estimating a heading direction of the user; and 
calculating a movement trace vector based on the dis 

tance traveled and the heading direction. 
18. The method of claim 15, wherein the first sensor data 

comprises accelerometer data, gyroscopic data, and compass 
data, the method further comprising estimating a heading 
direction of the user, wherein estimating the heading direc 
tion of the user comprises: 

determining a motion mode of the user by analyzing the 
accelerometer data; 

determining a number of steps taken by the user by ana 
lyzing the accelerometer data in view of the motion 
mode; 

determining an initial heading direction of the user in 
three-dimensional space using the gyroscope data and 
the number of steps; and 

determining a heading direction vector of the user by esti 
mating the heading angle of the user relative to a refer 
ence direction; and 

projecting the heading direction vector onto a plane on 
which the user is moving to estimate the heading direc 
tion of the user. 

19. The method according to claim 18, wherein projecting 
the heading direction vector onto a plane on which the user is 
moving comprises projecting the heading direction vector 
onto a horizontal plane perpendicular to a gravity vector. 

20. The method according to claim 15, wherein at least a 
portion of the first sensor data is the same as at least a portion 
of the second sensor data. 

21. The method according to claim 15, wherein the at least 
one landmark does not include a label. 

22. The method according to claim 15, wherein the at least 
one landmark comprises at least one structure selected from 
the group consisting of a building entrance; a staircase; an 
elevator; and an escalator. 

23. The method according to claim 15, further comprising: 
identifying a plurality of landmarks within the indoor envi 
ronment using the second sensor data; and 

resetting the estimate of the movement trace of the user 
each time a landmark is identified, wherein the estimate 
of the movement trace of the user is reset to the location 
of the identified landmark. 

24. The method according to claim 15, further comprising: 
obtaining sensor data from a plurality of users within the 

indoor environment; and 
analyzing the sensor data from the plurality of users to 

obtain a weighted-average estimated location for each of 
a plurality of landmarks within the indoor environment. 

25. The method of claim 8, wherein the method does not 
include war-driving. 

26. The method of claim 15, wherein the entire method is 
performed locally by a device of the user, wherein the device 
comprises the at least one sensor. 

27. The method according to claim 26, wherein the first 
sensor data and the second sensor data remain locally stored 
on the device and are not uploaded to any other device during 
the method. 

28. A method forestimating the heading direction of a user, 
the method comprising: 

obtaining sensor data from a device moving with the user, 
wherein the sensor data comprises accelerometer data; 

detecting a motion mode of the user by analyzing the 
accelerometer data; 
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detecting a number of steps of the user by analyzing the 
accelerometer data in view of the motion mode; 

determining an initial heading direction of the user in 
three-dimensional space using the accelerometer data 
and an analysis of forces applied on the device; 

determining a heading direction vector of the user by esti 
mating the heading angle of the user relative to a refer 
ence direction; and 

projecting the heading direction vector onto a plane on 
which the user is moving to estimate the heading direc 
tion of the user. 

29. The method according to claim 28, wherein the refer 
ence direction is earth’s magnetic north, 

wherein the sensor data further comprises compass data, 
and 

wherein the reference direction is determined by analyzing 
the compass data. 

30. The method according to claim 28, wherein determin 
ing the motion mode comprises determining the motion mode 
from among the following cases: the device is held in a hand 
of the user that swings naturally during a walk; the device is 
in a pants pocket of the user; the device is in a palm of a hand 
of the user or held in a way such the device is used by the user; 
the device is experiencing a sudden jerk; the device is in a 
jacket pocket of the user; the device is in a belt clip of the user; 
the device is in a bag carried by the user; the device is trav 
eling with the user on an equipment for locomotion, or a low 
energy random movement. 

31. The method according to claim 28, further comprising: 
filtering the sensor data obtained from the device; and 
buffering the filtered data and data of the detected steps. 
32. The method according to claim 28, wherein projecting 

the heading direction vector onto a plane on which the user is 
moving comprises projecting the heading direction vector 
onto a horizontal plane perpendicular to a gravity vector. 

33. A method for estimating the heading direction of a user, 
the method comprising: 

determining a gait cycle of a user using accelerometer data; 
determining an initial heading direction of the user in 

three-dimensional space using the accelerometer data 
and an analysis of forces applied on the device; 

determining a heading direction vector of the user by esti 
mating the heading angle of the user relative to a refer 
ence direction; and 

projecting the heading direction vector onto a plane on 
which the user is moving to estimate the heading direc 
tion of the user. 

34. The method of claim 33, wherein determining the gait 
cycle of the user comprises detecting points in time when a 
primary leg of the user touches the ground. 

35. The method of claim 33, wherein determining the gait 
cycle of the user comprises detecting a repetitive pattern of an 
equipment for locomotion. 

36. A method for identifying landmarks within an indoor 
environment, the method comprising: 

obtaining sensor data from at least one device carried by a 
user within the indoor environment, wherein the sensor 
data comprises at least one selected from the group 
consisting of: accelerometer data; compass data; gyro 
scope data; magnetometer data; barometer data; micro 
phone data; light sensor data; temperature sensor data; 
chemical sensor data; humidity sensor data; Bluetooth 
signal strength data; WiFi signal strength data; and cel 
lular signal strength data; 
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analyzing the sensor data to identify sensor signatures of 
the sensor data within the indoor environment; 

comparing the sensordata against known sensor signatures 
for building entrances, staircases, elevators, and escala 
tors to determine the existence and quantity of such 
structures within the indoor environment; and 

determining that a unique sensor signature within the 
indoor environment repeated within a predetermined 
threshold indicates an organic landmark. 

37. The method according to claim 36, further comprising: 
In response to determining the existence of a staircase, 

elevator, or escalator, determining a floor level of the 
indoor environment using at least sensor data from a 
barometer. 

38. The method according to claim 36, further comprising: 
dividing the indoor location into WiFi sub-spaces based on 

the WiFi signal strength data; and 
determining that a unique sensor signature within a given 
WiFi sub-space repeated within a predetermined thresh 
old indicates an organic landmark. 

39. The method according to claim 36, further comprising 
analyzing the sensor data to obtain a weighted-average esti 
mated location for each identified landmark. 

40. The method according to claim 36, comprising obtain 
ing sensor data from a plurality of devices carried by a plu 
rality of users within the indoor environment. 
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