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ABSTRACT
As malware in IoT devices �ourishes, defenses are lacking.
Traditional antivirus or intrusion detection-based defense
techniques fail for the limited computational capabilities and
the large diversity of platforms and environments. In this paper,
we present ThermWare, a non-intrusive screening method to
detect anomalous operations on embedded devices at run-time.
ThermWare relies on the observation that electronic circuits
generate subtle patterns of heat at the component level when
the corresponding module is accessed by the micro-operations
(e.g., �le-write) of the running code. We propose the use of these
side-channel heat signatures captured by a thermal camera to
determine the sequence of underlying computations in real time.
An early implementation of ThermWare shows success in detecting
common malware routines in general-purpose IoT devices. We
envision leveraging the thermal side-channel to track the internal
operations of an embedded device, which can potentially lead to
broader applications in engineering embedded systems, monitoring
device health and run-time capacity, assisting embedded coding
optimization, and physical layer security analysis.
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1 INTRODUCTION
Miniaturized Internet of Things (IoT) devices have enabled a
paradigm of connected everyday objects, ranging from a smart
light bulb to implantable microchips for pets. Recent advancements
show ubiquitous micro-motes [10] or insect-scale smart devices
[7, 8, 19, 35, 47] for �ne-grained sensing of our environments are
not a distant future. The small size and the embedded nature
of the future IoT devices forces a reconsideration of how we
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Figure 1: The overview of ThermWare, a thermal-side channel based
malware detection system.

approach security — even the most basic defenses, like anti-virus
software or process memory isolation, simply cannot run on
resource-constrained systems. Often, hardware debugging ports
are also sacri�ced in the architecture in the interest of saving space
and computation power on the circuit boards. As a result, standard
security methods do not apply to these devices, which makes them
notoriously vulnerable despite their close access to users’ private
information. At the same time, it is di�cult to make complete
architectural changes to reinforce security in such systems [46].
One of the approaches to ensure security in resource-constrained
embedded devices seeks alternative solutions in leveraging side-
channel information for o�oading anomaly detection, memory
forensics, memory rewriting, and malware activity monitoring to
more powerful machines.

The research community is constantly in search of new information
sources to combine and complement side-channel defense
techniques [20, 36, 42, 62]. This paper envisions a noninvasive
malware detection approach using thermal maps. Activities on
a processor and other peripherals lead to temperature variations
at di�erent regions of the circuit. The generated heat is directly
related to the switching of transistors’ state at the lowest level – an
indicator of activities at various functional units of the circuit and
inside the chips. When monitored with �ne-grained resolution in
time and space, the transient thermal map of the circuit can reveal
underlying operations at run-time. Such monitoring can be done
passively with thermal cameras, without any physical contact with
the device. A system can potentially learn this thermal pattern to
detect any deviation from the desired activities on the circuit. We
envision characterizing malicious activities on IoT devices through
spatiotemporal analysis of the circuit’s heat dissipation. We call
this system ThermWare. Figure 1 shows an overview of the system.
If successful, this can become a noninvasive method for malware
detection in small devices that are otherwise di�cult to connect to
standard monitoring equipment.

As a malware screening system, ThermWare requires only passive
access to the circuit board for scanning thermal signatures using
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infrared sensors or thermal cameras. Thermal map observation does
not require physical or electrical contact with the device, which
adds to its advantage compared to other side-channel methods. Our
system can be used as an add-on to the device under monitoring and
run detection code based on real-time thermal features. ThermWare
can also be useful for auditing the behavior of small embedded
devices, such as in-body medical devices when a patient visits
the doctor’s o�ce or during regular maintenance or replacements.
While we believe the use-case and physical implementation of the
method will evolve, in this paper we focus on exploring the core
capabilities of this side-channel in malware detection and assess
the advantages and limitations of such a system.

A system-on-chip (SoC) is built with careful positioning of modules
like register banks, memory units, CPU, communication radio, and
I/O interface inside one chip. We ask the question - Can we leverage
high-resolution thermal imaging techniques to detect anomalous com-
putations inside a tiny SoC? A program or computing operation can
be viewed as a sequence of activation of these modules at di�erent
locations of the chip. Given such activation inevitably release heat,
the spatial heat pattern can be a direct indicator of the underlying
computing operations. This can open an opportunity to infer the
executed code without a physical access. We aim to explore the
possibility.

Detection of a micro-operation in run-time, such as �le writes,
is particularly relevant since the majority of malware in Linux
environments are ransomware and web shells, and therefore �le
writes comprise a dominant portion of their behavior [6]. In
this work, we show that we can detect �le writes of at least
400KB with 80% accuracy using a relatively inexpensive thermal
camera. Additionally, we achieve more than 90% accuracy with a
higher-end thermal camera. Our results suggest that a high-end
camera provides diminishing returns if an application tolerates a
slight decrease in the accuracy level. Next, we show that an anomaly
detector can achieve reliable detection of commonmalware routines
in general-purpose IoT devices using an inexpensive thermal
camera adapter to a smartphone. At the same time, we report a
few undetectable actions, such as network port scanning on a voice
assistant device.

ThermWare demonstrates the feasibility of using heat signatures
as an alternative method to detect the states of computational
operations inside an embedded device. We hypothesize that the
fundamental units of the computations, such as �le write events,
memory access, network operations, etc., manifest as thermal
signatures. If this side-channel information is carefully analyzed,
it can track the behavior of running codes. This technique can
have several implications by adding to the capabilities of reverse
engineering embedded systems, monitoring device health and
run-time capacity, assisting embedded coding optimization, and
physical layer security analysis. Needless to say, this paper is only
a �rst step toward this broader vision and we aim to inquire about
the opportunities it presents. We start by experimenting with the
technique as a defense application that can identify anomalous
behavior and malware in an embedded system without requiring
system-level access.

2 FEASIBILITY STUDY
For initial proof-of-testing, we focus on detecting malware running
on a single-board-computer. While many operations could be used
as features to identify malware, we chose to speci�cally focus on �le
writes for this initial work, as malware most commonly performs
�le writes [6]. By extension, if we can identify the presence of
erroneous �le writes, we can detect the presence of malware.
We perform a 100MB �le write on a BeagleBone Black [1] and
record the thermal images using a Seek thermal camera [2] at 9 fps.
Figure 2 shows the board with three components indicated, as well
as a series of thermal images of the board’s heat signature over the
course of a �le write. All three chips provide clear visual indications
of write activity, as each gets noticeably hotter over milliseconds.
The eMMC �ash storage is of particular interest as it only heats
up during �le writes, lending credibility to the hypothesis that
the thermal signature could be used to identify the presence of
malware.

Figure 2: Thermal signature of a 100 MB �le written over time.
The left image shows a BeagleBone Black with three components
highlighted: (1) Power Management Integrated Chip, (2) Embedded
Multimedia Card, and (3) Processor, all of which produce distinct
heat signatures over the course of the write operation.

Complimenting power side-channel: Prior work [14] has shown
the feasibility of using a power side channel to detect generic
malware in the wild. We analyze the di�erence between power
and thermal side channels. In Figure 3 we show the power
consumption and average pixel value of the power management
chip of Beaglebone while running a Gafgyt malware. Formally,
we measured that the 2 signals are strongly correlated with a
0.76 Pearson correlation coe�cient. However, unlike a power side
channel, the thermal side channel is delayed by around 0.93B . This
is because the chip takes time to heat, even though it immediately
starts drawing power. Therefore, we consider the thermal side
channel as a complementary set of features to the power side
channel, for the task of malware detection.

3 DETECTING FILE-WRITE OPERATIONS FOR
MALWARE DETECTION

File write operations involve writing some number of bytes into
the onboard solid-state drive (SSD)/eMMC of the embedded system.
This writing activity causes the SSD chip to heat up, as shown
previously in Figure 2. To develop a malware detector, we focus
on detecting these heat variations in the solid-state drive. In this
section, we will describe a manual image processing-based and
learning-based technique to localize temperature variations and
classify if a �le write operation is performed.
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Figure 3: Power vs. thermal side channel when running Gafgyt
botnet on a Beaglebone Black.

3.1 Image Processing-based Detection
We process the recorded video frames individually to extract the
features needed for classi�cation. As the �rst work in this area, we
chose the most common features: average pixel intensity and the
ratio of heated area. The former is calculated as the mean value of
the pixels in the image and the second is the number of pixels above
a certain value. This step yields two values for each frame of the
video. As a next step, wemerge the results of the calculation for each
frame into a time series. To remove the noise, we use a Butterworth
low-pass �lter. We manually tuned the hyperparameters to remove
most of the noise without impacting small �le writes. We found
that a �lter order of 3 and a cuto� frequency of 0.1 yielded the
best results for all the �le writes. Figure 4 and 5 shows the mean
pixel intensity values before and after �ltering. We notice that the
sharpest peaks correspond to actual �le write operations, so we
take the derivative of the time series signal. We put a threshold
on the derivative to determine when a peak is due to an operation.
The line in orange corresponds to part of the plot above the 0.001
threshold, which indicates a detected �le write.

Figure 4: The extracted signal from the thermal camera and ground
truth of �le-write events over time.

Figure 5: Filtered signal and detected anomalous �le-writes events.

3.2 Learning-based Detection
We also explore a machine-learning-based approach to develop a
general-purpose pipeline that can detect anomalies on any chip.
We try Isolation Forests (IF) and Local Outlier Factors (LOF). After
multiple trials, we concluded that for the correct hyperparameter
values IF and LOFwould produce the same anomalies. Therefore, we
chose IF for our system, since it requires less memory for inference.
Feature extraction: For a general approach, independent of the
type of Integrated Circuit, we �rst �nd the region of interest. We
use a time series of all the values each pixel takes over time and
calculate the min-max variability. The intuition is that the pixels
with the largest variability are the pixels that heat up during an
operation. We found that taking the top 3000 pixels gave us the best
representation of the region in which we could visually observe a
temperature increase. After slicing 3000 pixels from every video
frame, we use the 9000 frames from the idle video to train an
isolation forest with 50 trees. After training, we tested using the
cropped video frames from the recording with �le writes and got
an anomaly score for each video frame. Finally, we use a con�dence
threshold to classify frames with anomalies.
Classi�cation: We merge consecutive detected frames and those
with a distance of less than 4 undetected frames (⇠ 0.5 seconds) into
a detection interval and count how many of the intervals overlap
with the ground truth of when a �le write occurred. We remove
any interval that has less than 5 frames because they are likely false
positives. Since there is a delay from the occurrence of a �le write
to when the heat from the write is discernible from the SSD, we
consider a ±2 second interval from the operation was recorded as
having been performed. Figure 6 shows the classi�cation results
along with the extracted signal from the region-of-interest. As we
can see, the anomaly detector misses just 1 �le write operation.

Figure 6: Detecting anomalous �le write operations using the
machine-learning-based technique.

4 IMPLEMENTATION AND SETUP
In this section, we describe our experimental setup and various IoT
device attack scenarios.

4.1 Experimental Setup
The components involved in generating, collecting, and analyzing
thermal side-channel data are described as follows:
1) Single-Board Computer (SBC): The experiments are
performed on a BeagleBone Black SBC [1]. The SBC contains a
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Figure 7: Comparison of images captured with (a) FLIR A325sc, (b)
Seek Thermal CompactPro, and (c) FLIR T530 cameras.

power manager, 4GB 8-bit embedded Multi-Media Card (eMMC), a
Sitara AM3358 ARM processor, and 512 MB DDR3 RAM. It also runs
the default Ubuntu 18.04 along with the GNU C and C++ compilers
and Python 2.7.18. The SBC is controlled through a series of Python
scripts to write �les of sizes varying from 25KB to 1000KB to the
BeagleBone’s �ash storage, from a laptop.

2) Thermal Cameras: Two of the three thermal cameras shown in
Figure 7: FLIR A325sc [3] and Seek CompactPRO [2] were chosen
to collect data, due to their diversity in thermal sensitivity, frame
rate, and price point. The detailed characteristics of these cameras
are mentioned in Table 1. The FLIR A325sc has a thermal sensitivity
of 50< and is capable of capturing video at a rate of 60 frames
per second. In contrast, the Seek CompactPRO has a slightly higher
thermal sensitivity of 70< , and can only capture video at a rate of
9 frames per second. There is a signi�cant price di�erence between
these two cameras, with the FLIR A325sc costing $10, 000 and the
Seek CompactPRO costing $500. FLIR A325sc is connected to the
laptop running FLIR Research Studio version 1.1.3 via ethernet
cable. Seek CompactPRO is connected to the iPhone via a lightning
cable and controlled through the o�cial Seek Thermal application
version 2.2.7.0. To maintain a stable video feed, the thermal camera
is placed in a �xed position, so that the majority of the board is
within the camera’s �eld of view. We ensure that the camera is not
in contact with any component on the board.

FLIR
A325sc

SeeK Com-
pactPRO

FLIR
T530

Resolution (pixels) 320x240 320x240 320x240
Temperature (°C) -20 to 350 -40 to 330 -20 to 650
Thermal Sensitivity
(mK)

50 <70 <50

Frame Rate (Hz) 60 9 30
Price (USD) 10K 500 11K

Table 1: Comparison of the thermal cameras used in experiments.

4.2 IoT Device Attack Scenarios
For testing di�erent applications of IoT devices, we simulate a
temperature sensor, air quality sensor, and a voice assistant on the
Beaglebone Black.

•Temperature and air quality sensors: A simulation of the
temperature and air quality sensor is performed by having the
Beaglebone read /dev/urandom and log the values in a �le, then
send it through the network to a �le server.

•Voice assistants:We simulate a voice assistant by recording audio
of the top 6 Alexa commands and translating them to text using a
speech-to-text library. We encompass a large number of commands
that deal with data fetching from the internet and audio playback.
We accomplish this with a script that downloads 10KB of data for
1000 iterations, performing text-to-speech and writing the results
to a �le.

•Malware:Malware is simulated while all the devices perform their
usual tasks.We consider either idle or logging states for temperature
and air quality sensors. For a voice assistant, we consider the
following set: idle, getting voice commands, and playing music.
We extract our features every 1 minute, such that we can capture
all states. Our list of simulated malware actions is based on the
top 4 most common Linux malware families [34]. We extract the
SYN-�ood routine from lightaidra, the telnet brute force fromMirai,
network scanning from pnscan, and a generic CPU cryptomining
program.

•Data collection: From the thermal recordings, every 1 minute
we extract the following features: number of �le writes detected
by previous anomaly detector (1 feature), general statistics about
CPU, power management chip, SSD and RAM (Mean, Variance, IQR,
Skewness, Kurtosis, Min, Max) (4 ⇤ 7 = 28 features), and every 10
seconds we get 25C⌘ , 50C⌘ , 75C⌘ percentile of textural features [25]
(contrast, dissimilarity, homogeneity) for distance 5 and angle 0
(6 ⇤ 3 = 18 features).

5 PRELIMINARY RESULTS
In this section, we evaluate the performance of our �le write
detectors and malware detection in IoT devices.

5.1 Performance: File Write Detection
We perform a systematic study in detecting �le writes of di�erent
sizes. We perform 20 �le writes for �le sizes from 1000KB - 25KB.
These �les’ write event sizes are chosen to be equal to or less
than the average malware �le size (in the range of hundreds of
KB) [40]; in fact, Lua malware are even larger than 1MB. We
capture thermal video with both the FLIR A325ac and the SeeK
CompactPRO cameras. We then apply both our automatic and
manual �le write detection techniques from Sections 3.1 and 3.2,
respectively.

Figure 8 shows the performance for �le write detection using both
types of cameras. We see that FLIR thermal camera has the highest
performance at �le sizes > 300 ⌫, and is at or above 90% at �le sizes
of 500 ⌫ and above. Conversely, the SeeK camera, averaged around
70% accuracy at �le sizes > 300 ⌫ and outperformed the FLIR at
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Figure 8: (a) Accuracy, (b) precision, and (c) recall of SeeK Compact Pro and FLIR A325sc cameras, using both automated and manual detection.

detecting �le writes <= 300 ⌫, with accuracy ranging between
roughly 30 and 50%. There’s a clear trade-o� compared to the
much less expensive SeeK if slightly lower detection performance
is tolerable. Manual write detection slightly outperformed our
automated write detector in both accuracy and recall, although
additional evaluation of the automated procedure or alternate ML
techniques would likely narrow the margin.

5.2 Performance: Malware Detection
In this section, we explore the capability of our features to detect
malware in embedded devices. A detection is considered successful
if the anomaly detector raises an alert within 1 minute of when the
malware execution takes place. Similarly, a false positive is counted
when an alert is raised during a time window where there is no
malware running and a false negative is considered when no alert
is raised during malware execution.

Table 2 shows the results of detecting various malicious routines as
they run alongside the emulated devices. Asmentioned, we run each
of the malware routines 10 times for each benign action. Following
are the key observations: 1) FP is usually 1 for Ransomware
and Cryptomining activities. The reason is that these activities
signi�cantly heat the CPU, which takes some time to cool down.
This causes our system to register anomalies even after malware
activity is �nished. 2) Our system �nds it challenging to detect
malware attacks that require very little CPU activity (e.g., scanning).
For example, our system missed the �rst two runs of telnet brute
force, when the scanner was searching for IPs to attack. 3) In the
voice assistant case, the model is trained to accept long actions with
high CPU requirements (e.g., playing music). Therefore, no alarm
will be raised unless the CPU or power management chips heat
beyond the detection threshold. That is why our detector missed
some quick low computational network port scanning attacks. 4) It
also highlights the limitation that a targeted malware may be able
to evade our detector by operating in sequences, allowing chips to
cool down before performing the next batch of operations.

6 RELATEDWORK
The literature in embedded systems security and side-channel
information processing is extremely rich and rooted in many
sub�elds of engineering. Here we zoom into some related areas.

Securing IoT devices: The susceptibility of IoT devices to attack
has been studied thoroughly [30, 51, 52, 54, 55, 58, 62]. In 2016, the

Device Action Malware Action TP FP FN

Sm
ar
tt
he

rm
.

Idle
Ransomware 10 1 0

Cryptomining 10 1 0

Others 20 0 0

Logging
Net Scanning 9 0 1

Others 30 0 0

A
ir

se
ns

or Idle
Ransomware 10 1 0

Others 30 0 0

Logging
Ransomware 10 1 0

Cryptomining 10 1 0

Others 20 0 0
Vo

ic
e
A
ss
is
ta
nt

Idle All 40 0 0

Speech-to-Text
Ransomware 10 1 0

Net Scanning 9 0 1

Others 20 0 0

Play music

Ransomware 10 1 0

Telnet Brute. 8 0 2

Net Scanning 2 0 8

Cryptomining 9 0 1

Table 2: Malware detection results for di�erent kinds of devices
and activities.

Mirai botnet was used to launch some of the largest recorded DDoS
attacks in history, including a 623Gbps attack [5], and a 1.2 Tbps
attack [17]. A Mirai bot simply spread by attempting log into a
Telnet service using a list of factory default username/password
combinations. The type of solutions that have been considered
thus far focuses predominately on analyzing the network tra�c
of these devices [9, 22, 38, 60, 62]. ThermWare is complementary
to these methods and provides an independent source of detection
and validation.

Attack using side-channels: Past projects have shown methods
for inferring information from a variety of signal sources [21],
including electromagnetic �elds [4, 45], household AC power
consumption [26], sounds and vibrations [12, 20, 49, 53], inertial
sensor data [15], and optical channels [56, 59]. Integrated circuit
(IC) design and manufacturing research have explored on-chip heat
distributions as one of the quality metrics [24, 32, 39]. Security
researchers have leveraged this as a side channel to probe internal
activities and infer various information to reveal potential attacks
through covert communications and data leakage [23, 29, 37, 41, 44].
Prior work [57] explores a reverse problem and has shown that
CPU workload can be used to infer CPU temperature. In this paper,
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we seek to utilize the inherent problem of information leakage to
our advantage in detecting malware.

Defense using side-channels: The use of side channels to
detect malicious behavior has also been prevalent in several prior
works [16, 31, 43, 61]. In [11], side-channel current analysis is
used to detect the presence of modi�ed �rmware on an embedded
solid-state drive. A few early papers [13, 14, 33, 36], published
between 2008 and 2013, have shown the possibility of using energy
consumption patterns as an indicator of anomalous activity on
computing devices. VirusMeter [36] and WattsUpDoc [14] show
changes in power consumption during the execution of malware
codes in cell phones and medical devices. Prior works [18, 27, 28]
have used the thermal and EM side channels to detect backdoors in
device manufacturing. While their threat model is di�erent from
ours (e.g., supply chain attacker), they demonstrate that these side
channels can be used to detect anomalies in a chip’s normal heating
patterns. Our work demonstrates that thermal readings can be used
to detect anomalous out-of-order operations for the purpose of
detecting malware.

7 APPLICATIONS BEYOND SECURITY
In this paper, we explored the potential of using thermal
side-channel techniques to detect malware in embedded systems.
We believe that ThermWare can also be extended to more general
use cases and application scenarios such as non-intrusive reverse
engineering and remote performance auditing.

Non-intrusive reverse engineering: Reverse engineering
embedded systems can be a challenging and time-consuming
process, especially if the goal is to do so in a non-intrusive way.
However, the thermal side-channel can be a useful tool to gain
insight in the internals of the chip. By analyzing the changes in
surface temperature of the chip, as it performs di�erent operations,
an engineer can create a spatio-temporal heatmap which can reveal
the sequence of operations that were executed. This information
can be helpful in understanding the design and function of the
system and can help in reverse engineering the ongoing process.

Performance monitoring: ThermWare can also be used to
remotely monitor and audit the performance of data centers
and high performance computing (HPC) clusters. The thermal
signatures can be obtained using the existing temperature sensors
and infrared cameras in the centers. These sensors can be
repurposed to create a more �ne grained spatial heatmap which
can be then used to monitor the performance and behaviour of the
system, including memory transfer, job scheduling and activity of
CPU, GPU, routers, etc. Using the performance metrics, engineers
can gain insights into the functioning of the data centers and
identify potential issues or scope of improvements. Additionally,
any non-regular temperature patterns detected can serve as early
warnings for data leaks, malware, or other security threats.

Covert communication: Alternative communication modalities
are useful [48, 50] for clandestine operations where information
need to be exchanged without leaving any trace in the wireless
channel or in the Internet. Recently, BitWhisper showed the
use of heat generated by CPU or GPU as a modality for

covert data communication [23]. By detecting the heat signature
of micro-operation at the circuit level, ThermWare essentially
provides a way to observe complex patterns of heat signatures.
If explored, this can be a building block for a high data-rate thermal
communication channel between an embedded device and a thermal
camera. The system can run a combination of micro-operations
to generate a speci�c pattern of heat across di�erent components
encoding data bits. The camera can use methods shown in this
paper to recover data from the temporal variations of the heat
patterns.
8 CONCLUSION AND FUTUREWORK
This paper presents ThermWare, a malware detection system for
IoT devices using thermal side-channel. We show the possibility of
real-time malware detection by monitoring the thermal patterns
of a �le write operation on an embedded system. Needless to say,
ThermWare is an exploratory �rst realization of the concept and
there is room for improvements and further work.
Formalizing the veri�cation process: ThermWare requires
knowing the original thermal signature of an application to detect
anomalies. This limits the generalization to other applications and
software updates of the existing application since any change in
code a�ects the thermal signature. We plan to learn the mapping of
code to thermal signatures. Our intuition is to have a directed graph
of computing operation to a spatio-temporal thermal sequence
which can be used to generate new thermal signatures given any
code. If successful, developers can create a version of true thermal
signatures using the directed graph and release it along with their
code.
Generalize malware detection: ThermWare is a novel solution
for detecting malware that leverages the inherent temperature
variations inside a chip that occur when executing commands. At
present, the system is primarily focused on read/write activities.
However, the fundamental concept of detecting malware by
monitoring temperature patterns is not restricted to read/write
activities alone. In the future, we aim to generalize this technique
for the detection of any unauthorized execution of commands, as
any process or computation will result in heat variations in certain
parts of the chip. These variations may be small or large, depending
on the activity, but with �nely calibrated temperature sensors, we
can detect these variations and use them to detect malware.
Obfuscation: Currently, the system does not account for an
adversary that is invested in bypassing our thermal detection.
For example, an adversary can obfuscate the attack by emulating
thermal signatures. This can be done by carefully timing the
�le write operation along with other �le write operations or by
emulating a known application’s signature. We plan to work on
identifying such obfuscation attacks.
Resolution: In the future, we will explore the e�ect of the spatial
and temporal spread of the heat to neighboring regions. If a
compute-heavy task takes place, the heat gradually spread all over
the chip spoiling the resolution until the chip cools down. We want
to make the system robust to past operations by incorporating the
e�ect of the multidimensional Point Spread Function of the heat.
As this research evolves, we envision that our core idea of thermal
side-channel will open new ways of defense in miniature IoT
devices.

86



ThermWare: Toward Side-channel Defense for Tiny IoT Devices HotMobile ’23, February 22–23, 2023, Newport Beach, CA, USA

REFERENCES
[1] Beaglebone black. https://beagleboard.org/black. Last accessed 21 December

2022.
[2] Compactpro: a�ordable, high-performance thermal imaging for your smart-

phone. https://www.thermal.com/uploads/1/0/1/3/101388544/compactpro-
sellsheet-usav1.pdf. Last accessed 21 December 2022.

[3] Flir a325sc thermal imaging camera for real-time analysis. https://www.�irmedia.
com/MMC/THG/Brochures/RND_010/RND_010_US.pdf. Last accessed 21 De-
cember 2022.

[4] A������, D., A�����������, B., R��, J. R., ��� R������, P. The em side—
channel(s). In Cryptographic Hardware and Embedded Systems - CHES 2002
(Berlin, Heidelberg, 2003), B. S. Kaliski, ç. K. Koç, and C. Paar, Eds., Springer
Berlin Heidelberg, pp. 29–45.

[5] A�����. Akamai’s State of the Internet / Security, Q3 2016 Re-
port. https://www.akamai.com/us/en/multimedia/documents/state-of-the-
internet/q3-2016-state-of-the-internet-security-report.pdf, 2016.

[6] A���������, E., Z��, Z., B����, L., B���������, D., ��� D�������, T. When
malware changed its mind: An empirical study of variable program behaviors in
the real world. In 30th USENIX Security Symposium (USENIX Security 21) (Aug.
2021), USENIX Association, pp. 3487–3504.

[7] B��, Y., G���, N., ��� R��, N. Spidr: Ultra-low-power acoustic spatial sensing for
micro-robot navigation. In Proceedings of the 20th Annual International Conference
on Mobile Systems, Applications and Services (2022), pp. 99–113.

[8] B��, Y., G���, N., ��� R��, N. Ultra-low-power acoustic imaging. In Proceedings
of the 20th Annual International Conference on Mobile Systems, Applications and
Services (2022), pp. 523–524.

[9] B�����, T., ��� C�������������, B. Sounding the bell for improving Internet
(of Things) security. In ACM Workshop on Internet of Things Security and Privacy
(IoTS&P) (2017).

[10] B���, C. S., L��, I., C����, T., H�������, A. E., B�����, D., ��� F������, D. Ó.
Millimeter-sized smart sensors reveal that a solar refuge protects tree snail partula
hyalina from extirpation. Communications Biology 4, 1 (2021), 1–8.

[11] B����, D., W����� III, T. O., B�����, J. A., I���, R. W., N��, H. T., S���, J., ���
R�����, R. Detecting �rmware modi�cation on solid state drives via current
draw analysis. Computers & Security (2020), 102149.

[12] C��������, R. R., ��� R��, N. Vibrational devices as sound sensors, Apr. 21
2020. US Patent 10,628,484.

[13] C����, S. S., M������, H., R�������, B., S�����, J., F�, K., ��� X�, W. Cur-
rent events: Identifying webpages by tapping the electrical outlet. In European
Symposium on Research in Computer Security (2013), Springer, pp. 700–717.

[14] C����, S. S., R�������, B., R������, A., G������, S., S�����, J., X�, W., ���
F�, K. Wattsupdoc: Power side channels to nonintrusively discover untargeted
malware on embedded medical devices. In Presented as part of the 2013 {USENIX}
Workshop on Health Information Technologies (2013).

[15] D��, S., R��, N., X�, W., C��������, R. R., ��� N���������, S. Accelprint:
Imperfections of accelerometers make smartphones trackable. In Proceedings of
the Network and Distributed System Security Symposium (NDSS) (2014).

[16] D���, F., L�, H., L��, F., H�, H., C����, L., X���, H., ��� G�, R. Deeppower:
Non-intrusive and deep learning-based detection of iot malware using power
side channels. In Proceedings of the 15th ACM Asia Conference on Computer and
Communications Security (New York, NY, USA, 2020), ASIA CCS ’20, Association
for Computing Machinery, p. 33–46.

[17] D��. Dyn analysis summary of Friday October 21 attack. https://dyn.com/blog/
dyn-analysis-summary-of-friday-october-21-attack/, 2016.

[18] F����, D., B��, C., ��� S���������, A. Temperature tracking: An innovative
run-time approach for hardware trojan detection. In 2013 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD) (2013), IEEE, pp. 532–539.

[19] G���, N., ��� R��, N. Enabling self-defense in small drones. In Proceedings of
the 21st International Workshop on Mobile Computing Systems and Applications
(2020), pp. 15–20.

[20] G�����, D., S�����, A., ��� T�����, E. Rsa key extraction via low-bandwidth
acoustic cryptanalysis. In Advances in Cryptology – CRYPTO 2014 (Berlin, Hei-
delberg, 2014), J. A. Garay and R. Gennaro, Eds., Springer Berlin Heidelberg,
pp. 444–461.

[21] G�, P., S���, D., B�����, R., K�����, E., ��� X��, Y. Thermal-aware 3d design
for side-channel information leakage. In 2016 IEEE 34th International Conference
on Computer Design (ICCD) (2016), IEEE, pp. 520–527.

[22] G��, H., ��� H��������, J. IP-based IoT device detection. In ACM Workshop
on Internet of Things Security and Privacy (IoTS&P) (2018).

[23] G���, M., M�����, M., M�����, Y., ��� E������, Y. Bitwhisper: Covert signaling
channel between air-gapped computers using thermal manipulations. In 2015
IEEE 28th Computer Security Foundations Symposium (2015), IEEE, pp. 276–289.

[24] H�����, H. F., L����, J., W����, A., ���W����, J. Spatially-resolved imaging
of microprocessor power (simp): hotspots in microprocessors. In Thermal and
Thermomechanical Proceedings 10th Intersociety Conference on Phenomena in
Electronics Systems, 2006. ITHERM 2006. (2006), IEEE, pp. 5–pp.

[25] H�������, R. M., S��������, K., ��� D�������, I. Textural features for image
classi�cation. IEEE Transactions on Systems, Man, and Cybernetics SMC-3, 6 (1973),
610–621.

[26] H���, G. W. Nonintrusive appliance load monitoring. Proceedings of the IEEE 80,
12 (1992), 1870–1891.

[27] H�, J., G��, X., M�, H., L��, Y., Z���, Y., ��� J��, Y. Runtime trust evaluation
and hardware trojan detection using on-chip em sensors. In 2020 57th ACM/IEEE
Design Automation Conference (DAC) (2020), IEEE, pp. 1–6.

[28] H�, K., N�����, A. N., R���, S., ��� K���������, F. High-sensitivity hardware
trojan detection using multimodal characterization. In 2013 Design, Automation
& Test in Europe Conference & Exhibition (DATE) (2013), IEEE, pp. 1271–1276.

[29] H�����, M., ��� S������, J.�M. The temperature side channel and heating
fault attacks. In International Conference on Smart Card Research and Advanced
Applications (2013), Springer, pp. 219–235.

[30] J��, Y. J., C���, Q. A., W���, S., R������, A., F��������, E., M��, Z. M., ���
P������, A. Contexiot: Towards providing contextual integrity to appi�ed IoT
platforms. In Network and Distributed System Security Symposium (NDSS) (2017).

[31] J������, J. M. H., N������, J. A., G������P�����������, K., P������, S., ���
B������, R. A. Malware detection on general-purpose computers using power
consumption monitoring: A proof of concept and case study. arXiv preprint
arXiv:1705.01977 (2017).

[32] K�����, D., Y�����, K., M��������, A., A������, M., ��� S�������, A. Side-
by-side comparison between infrared and thermore�ectance imaging using a
thermal test chip with embedded diode temperature sensors. In 2012 28th Annual
IEEE Semiconductor Thermal Measurement and Management Symposium (SEMI-
THERM) (2012), IEEE, pp. 344–347.

[33] K��, H., S����, J., ��� S���, K. G. Detecting energy-greedy anomalies and
mobile malware variants. In Proceedings of the 6th international conference on
Mobile systems, applications, and services (2008), pp. 239–252.

[34] K�����, P., ��� L����, M. Linux threat report 2021 1h: Linux threats in the
cloud and security recommendations, Aug 2021.

[35] L��, I., H����, R., C��������, G., H��, C.�W., Y���, M., S������, S., E����, K.,
C��������, T., L�, Y., L��, J., �� ��. msail: milligram-scale multi-modal sensor
platform for monarch butter�y migration tracking. In Proceedings of the 27th
Annual International Conference on Mobile Computing and Networking (2021),
pp. 517–530.

[36] L��, L., Y��, G., Z����, X., ��� C���, S. Virusmeter: Preventing your cellphone
from spies. In International Workshop on Recent Advances in Intrusion Detection
(2009), Springer, pp. 244–264.

[37] M����, R. J., R��, D., R����������, A., M�����, C., T�����, L., ��� C�����,
S. Thermal covert channels on multi-core platforms. In 24th USENIX security
symposium (USENIX security 15) (2015), pp. 865–880.

[38] M�����, Y., B�������, M., S������, A., O����, M., T����������, N. O.,
G�������, J. D., ��� E������, Y. Detection of unauthorized IoT devices us-
ing machine learning techniques. https://arxiv.org/pdf/1709.04647.pdf.

[39] M����M�������, F. J., B����, M., N�������B��������, J., ��� R����, J. Mea-
suring power and temperature from real processors. In 2008 IEEE International
Symposium on Parallel and Distributed Processing (2008), IEEE, pp. 1–5.

[40] M����������, M., ��� P���, H. Useful and useless statistics about viruses and
anti-virus programs. In Proceedings of the CARO Workshop (2010).

[41] M������, S. J. Hot or not: Revealing hidden services by their clock skew. In
Proceedings of the 13th ACM conference on Computer and communications security
(2006), ACM, pp. 27–36.

[42] N�����, A., S����������, N., A���, M., Z����, A., ��� P��������, M. Eddie:
Em-based detection of deviations in program execution. In Proceedings of the 44th
Annual International Symposium on Computer Architecture (2017), pp. 333–346.

[43] O��M���, O., N�����, N., E������, Y., ��� R�����, L. Dynamic malware analysis
in the modern era—a state of the art survey. ACM Comput. Surv. 52, 5 (Sept. 2019).

[44] P������, M., R�����, T., P��������, B., ��� D� P����, N. Cpu overheating
characterization in hpc systems: a case study. In 2018 IEEE/ACM 8th Workshop
on Fault Tolerance for HPC at eXtreme Scale (FTXS) (2018), IEEE, pp. 59–68.

[45] ��������, J.�J., ��� S�����, D. Electromagnetic analysis (ema): Measures
and counter-measures for smart cards. In Smart Card Programming and Security
(Berlin, Heidelberg, 2001), I. Attali and T. Jensen, Eds., Springer Berlin Heidelberg,
pp. 200–210.

[46] R���, S., R����������, A., K�����, P., ��� H���������, S. Security in em-
bedded systems: Design challenges. ACM Transactions on Embedded Computing
Systems (TECS) 3, 3 (2004), 461–491.

[47] R��, N. Owlet: Insect-scale spatial sensing with 3d-printed acoustic structures.
GetMobile: Mobile Computing and Communications 25, 2 (2021), 14–20.

[48] R��, N., ��� C��������, R. R. Ripple ii: faster communication through phys-
ical vibration. In 13th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 16) (2016), pp. 671–684.

[49] R��, N., C��������, R. R., ��� A� H��������, H. Causing microphones to
detect inaudible sounds and defense against inaudible attacks, June 2 2020. US
Patent 10,672,416.

[50] R��, N., G����, M., ��� C��������, R. R. Ripple: Communicating through
physical vibration. In 12th USENIX Symposium on Networked Systems Design and

87



HotMobile ’23, February 22–23, 2023, Newport Beach, CA, USA Nakul Garg, Irtaza Shahid, Erin Avllazagaj, Jennie Hill, Jun Han† , Nirupam Roy

Implementation (NSDI 15) (2015), pp. 265–278.
[51] R��, N., H��������, H., ��� C��������, R. R. Backdoor: Sounds that a micro-

phone can record, but that humans can’t hear. GetMobile: Mobile Computing and
Communications 21, 4 (2018), 25–29.

[52] R��, N., H��������, H., ���R��C��������, R. Backdoor:Makingmicrophones
hear inaudible sounds. In Proceedings of the 15th Annual International Conference
on Mobile Systems, Applications, and Services (2017), ACM, pp. 2–14.

[53] R��, N., H��������, H., ��� R�� C��������, R. Riding the non-linearities to
record ultrasound with smartphones. In Proceedings of the 15th Annual Inter-
national Conference on Mobile Systems, Applications, and Services (2017), ACM,
pp. 189–189.

[54] R��, N., ��� R��C��������, R. Listening through a vibrationmotor. In Proceed-
ings of the 14th Annual International Conference on Mobile Systems, Applications,
and Services (2016), ACM, pp. 57–69.

[55] R��, N., S���, S., H��������, H., ��� C��������, R. R. Inaudible voice com-
mands: The long-range attack and defense. In 15th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 18) (2018), USENIX Association,
pp. 547–560.

[56] S���, S., T��, S. R. X., D��, Y., R��, N., ��� H��, J. Lidarphone: acoustic
eavesdropping using a lidar sensor. In Proceedings of the 18th Conference on
Embedded Networked Sensor Systems (2020), pp. 701–702.

[57] S����, R. A., T���, T., L����, M. M. R., N�����, N., ��� A� I����, A. A.
Workload-based prediction of cpu temperature and usage for small-scale dis-
tributed systems. In 2015 4th International Conference on Computer Science and
Network Technology (ICCSNT) (2015), vol. 1, IEEE, pp. 1090–1093.

[58] S��������, V., C���, D., E���, D., ��� B�����, R. Smart-phones attacking
smart-homes. In ACM Conference on Security and Privacy in Wireless and Mobile
Networks (WiSec) (2016).

[59] T����, S., L�����, H., S������, J.�P., ��� B���, C. On the power of optical
contactless probing: Attacking bitstream encryption of fpgas. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Security
(New York, NY, USA, 2017), CCS ’17, Association for Computing Machinery,
p. 1661–1674.

[60] W���, D., A�������, N., ��� F�������, N. Cleartext data transmissions in
consumer IoT medical devices. In ACM Workshop on Internet of Things Security
and Privacy (IoTS&P) (2017).

[61] Y���, H., ��� T���, R. Power consumption based android malware detection.
Journal of Electrical and Computer Engineering 2016 (2016).

[62] Y�, T., S����, V., S�����, S., A������, Y., ��� X�, C. Handling a trillion
(un�xable) �aws on a billion devices: Rethinking network security for the Internet-
of-Things. In Workshop on Hot Topics in Networks (HotNets) (2015).

88


